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ABSTRACT 
This paper describes three strategies for realisation of time 
sub optimal learning algorithm applied for position 
servomechanism control. This servomechanism was 
realised in laboratory and its control was realised in real 
time. The necessity of learning algorithm usage results 
from demand of time sub optimal control of position 
servomechanism even its loads is changed in large range. 
Instantaneous value of moment of inertia is not known, so 
it is not possible to use deterministic time optimal control 
with switching curved line. Author derived three different 
learning strategies for “recovery” time sub optimal 
trajectory. The effectiveness (algorithm learning time) is 
different for every strategy. Strategies of time sub optimal 
switching curved line finding are based on sliding mode 
control. It is combined with: 1.) progressive search of 
suitable slope of switching line, 2) real time continuous 
identification of servo mechanism parameters and 
computing of switching curved line, 3) off line computing 
of servo mechanism inverse neurons model with 
switching curved line computing followed by real time 
classification with time suboptimal control.  
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1. Introduction 
 

The learning control systems have an advantage 
against the systems with classical control algorithms in 
case when the inner or outer control conditions change. 
Classical strategy can utilize learned information from 
previous control processes or situations, which they have 
stored in memory and after the successful situation 
recognition they can acquire the optimal results in a 
shorter time. Better advance for learning can be 
successfully applied also on the sliding mode control with 
the help of the artificial neural networks. The learning 
system should work with a memory, which stores the 
previous adaptation results. In the learning process, 
following the adaptation results, the system will choose 
the best one. Then the aim is to minimize the loss: 
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where x  is a system expression (state), Ω  is a teacher 
information and ω  is a control rule. The general loss of 

optimisation criteria, in the learning system after the 
learning process, is always less than in the adaptive 
system. The best strategy, from author point of view, is 
combination of continuous identification of servo-
mechanism parameters with switching curved line 
computation in real time from neuro nets model. 
The time needed for the system learning is specified by 
speed of solving the equation (1) and markedly depends 
on the amount of priory information about the controlled 
system. The advantage of the learning system against the 
optimal controllers is that its design does not require the 
whole priory information about the environment or 
controlled system.  
The paper is organized as follows. Section 2 describes the 
problem of the optimal control, section 3 describes sliding 
mode control, section 4 describes learning controller and 
section 5 describes real time simulation experiments and 
practical results. The paper ends with conclusion and 
outlook in section 6. 
 
 
2. Time Optimal Control Problem. 
 

The tasks of t-optimal control belonged among the 
first problems, which were solved in the theory of the 
automatic control and the system optimalization. Only the 
formulation of minimum principle allowed the common 
view on questions of the time-optimal control of the linear 
systems with the limitation of controlled variable. The 
properties of the optimal trajectories are often used in 
non-linear systems, in time-suboptimal servomechanism 
of the robots and in the adaptive and learning algorithms.  
The learning controller is designed for the laboratory 
carriage model, powered by DC - motor. The aim is to 
find t-optimal control of its position. The picture of the 
model is on the Figure 1. The transfer function of this 
system can be reduced to the form 
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where K is gain and T is time constant of carriage model. 
The laboratory carriage model can be loaded with 0 to 6 
different weights (1 weight = 0.6 kg). Then transfer 
function (2) has 7 different gains K and time constant T, 
which depends also from friction. Real friction is non 
linear model (2) suppose linear coulomb friction. 
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Fig. 1 The laboratory carriage model 

 
Carriage model is a system with the 2nd-level delay for 
which it is possible to derive time optimal control by 
control loop on Fig. 4 and responses on Fig.2. Trajectory 
under the time axis represents the control process in the 
phase space [x1, x2] = [e(t),e’(t)]. There is one switch-
point on the phase trajectory. 
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Fig. 2. Response and state space trajectory of the second-order 
time-optimal controlled system. 

 
If controller knows “K” and “T” exactly although weights 
on carriage are changing, than it can compute switching 
function (4), so the control process becomes t-optimal.  
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Fig. 3 Responses and parameters for some weights 

3. Sliding Mode Control. 
 
The sliding mode control (SMC) is very popular and 
commonly used. The advantage is its really simple design, 
invariance and robustness. The relay control (bang-bang) 
belongs to the first applications [2], [4], when the actual 
signal is bounded. Therefore the t-optimal control 
acquires only minimal or maximal actual values. The 
SMC controller is very simple. The actual value is 
appointed according to the place in the phase state. The 
phase state is divided by the switching surface s(x): 
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Fig. 4 Time optimal control loop block scheme. 
 

The most frequent form of the switching surface is 
linear function [3],[5]: 
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Usually this switching function does not satisfy the t-
optimal control requirement and the control can reach the 
sliding mode. The proper t-optimal switching function is 
non-linear. The first aim of learning algorithm is to find 
this switching function. Switching function is derived 
from step response (4) of controlled process (2) and is 
described by (5). Then controlled variable from Fig. 4 is 
described by (6). 
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Because weights on carriage can be changed we don’t know 
instantaneous value for time constant T and gain K of controlled 
process, so we cannot compute switching function and realize t-
optimal control. Learning controller in three ways can solve this 
problem. Real time measurement of carriage position in every 
sampling interval (5 [ms] to 20 [ms]) and their filtration is very 
important step in all control strategy but it is not described in 
detail. Next section describes three ways for realisation of learning 
controller based on t – optimal control. 



4. Learning Controller. 
 

Why do we need learning controller? When the 
carriage-loads are changed this means that parameters of 
controlled process are changed. There are six various 
carriage-loads and therefore it is a system with seven 
different parameter couples. So, when the controller is set 
for one system and the switching function is found, the 
function is saved in memory of learning controller for 
case of a repeated regulation of this system. The learning 
controller could control the system t-optimally even if 
system parameters would change. The fundaments for 
learning algorithm formulation were published in [7]. 
Some outputs can be seen on Fig. 6 to Fig. 9 and in 
section with simulation experiments.  

The strategies of time sub optimal switching function 
finding are based on sliding mode control. It is combined 
with: 1.) progressive search of suitable slope of switching 
line, 2) real time continuous identification of servo 
mechanism parameters and computing of switching 
curved line, 3) off line computing of servo mechanism 
inverse neurons model with switching curved line 
computing, than real time classification with time 
suboptimal control. The idea of learning controller for 
these strategies is common and is illustrated on Fig. 5. 
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Fig. 5 Block scheme of the learning controller 

 
Blocks in this figure are as follows: 

The block of classification is responsible for system 
detection. It generates number of the system, according to 
the system parameters. Because of ability to use the saved 
results for correct system, it is necessary for the controller 
to classify the current system. The classifications, which 
are used in this paper, are based on the parameter 
identification or on ART network [1]. 
The block of controller is responsible for actual value. It 
this block we firstly describe strategy: progressive search 
of suitable slope of switching line. 

During progressive generation of switching line slope 
Cp, by adaptive sliding mode algorithm, the points from 
switching curve for several value of set point are saved in 
memory. With such proceeding, more points for switching 
curve can be found and the parameters of switching curve 

function can be calculated or interpolated. The optimal 
step response for selected set points as well as points from 
switching curve is selected from all generated step 
responses according to response with minimal settling 
time without overshot. On the Fig. 6 and Fig. 7 is illustrated 
process for switching curved line points searching. As it can be 
seen it is needed 5 to 10 step responses for finding points from 
switching curved line for one pair of parameters [K, T] of model 
(2). So, this learning strategy cannot by realize in real time, but it is 
first step for problem solving. 

1234 5

13'
4'

5'

e(t) = w- y(t) 

1,2,3,4,5 –progressive generation 
               of Cp 
[e5(t),e'5(t)] – first found point of 
                      switching curve 

[e5'(t),e'5'(t)] – second found point
                      of switching curve

e'

Cp1

Cp3’

Cp1- slope of switching 
      line for point 1 

 
 

Fig. 6 State space trajectories during learning process by 
searching of points from switching curved line 
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Fig. 7 Step responses during learning process by searching of 

points from switching curved line. 
 
For control strategy with identification of controlled parameters 
and follow-up computation of switching curved line (4) in real 
time a new way for parameters computation from step response is 
needed (6) of controlled process (2). The on line continuous 
identification cannot be used. Parameters K, and T have to be 
computed before instant of time when controlled variable begins 
switching. From step response (4) can be derived dotted 
parameters estimation of transfer function (2) in the form (7). 
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The weak point of calculation is that we need to know 
immediate derivative values of controlled variable. As can 
be seen from Fig. 8 derivation values is change only in 9-
15 levels (sensor with 1 increment on 0.28 mm was used). 
The loop responses on Fig. 8 have assumed that controlled 
variable parameters and also switching curved line are 
known therefore identification was not necessary. 
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Fig. 8 Loop response, state trajectory and controller output of 
time suboptimal control for carriage system. 

 
Although filtered signal (100 [ms] filtered time constant) 
was used on Fig 9, derivative values were still too corrupt 
with noise, and then derivative values of controlled 
variable has not be computed precisely, so settling time 
was not time optimal and controlled variable also were 
switching only to one polarity.  
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Fig. 9 Loop response, state trajectory and controller output for 
time suboptimal control. 

 
In this strategy real time identification is used for classification and 
also for t- suboptimal control and it is nod needed special block for 
simulation and learning controller. 

The third strategy it uses the feed-forward neural net 
NN2 [5] for approximation of the switching function. At 
the beginning the NN2 approximates the linear switching 
function. The NN2 is trained according to the simulated 
phase points. Later the NN2 is adjusted to approximate 
the non-linear t-optimal switching function. The switching 
function with NN2 can be: 
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where n is the system order. The complexity of the net 
NN2 depends on controlled system order. In case of the 
second-order system (2) the NN2 will have one input and 
one output. It should have at least 10 neurons with the 
non-linear activation functions.  
When system parameter are changing, the learning 
algorithm sets the NN2 (its weight’s matrix WNN2) 
according to the classified system (sys_no). 

The block of simulation contains the discrete linear 
neural model (feed-forward NN1) of system in the form: 
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The number of NN1 inputs depends on the system order. 
In case of the second-order system (2), the NN1 will have 
at least 6 inputs and one output. Therefore the system is 
linear and the NN1 should have a couple of linear 
neurons. This model is used for a simulation. The 
simulation generates the points of the t-optimal phase 
trajectory. According to these points the neural net NN2 is 
trained. After that, the NN2 approximates the t-optimal 
switching function. 
The block of learning algorithm is responsible for task 
cooperation, memory management, neural nets training 
and simulation.  
Both nets (NN1, NN2) are trained with Levenberg-
Marquardt method [5]. This method is faster then the 
common back-propagation. 
The learning controller, described above, is very effective, 
because it is able to find t-optimal control in two learning 
steps for every single system parameter change. In the 
first step of the learning, the control process goes 
according to the a priori defined switching function in the 
NN1. In the second step of the learning, the control 
process is t-optimal. 
 
 
5. Simulation Experiments. 
 

The best results have been achieved with combination of real 
time measurement of controlled variable and exact derivation 
values computation from state estimator. In the state estimator 
model of controlled process with 2 weights were assumed in all 
situations Block scheme of t-optimal control loop with state 
estimator can be seen in Fig. 10. All responses for control loop 
with state estimator can be seen on Fig. 11.  
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Fig.10 Block scheme of t - optimal control loop with state 
estimator. 
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Fig.11 Loop response, state trajectory and controller output for 

control loop with state estimator. 
Next simulation experiments are for control loop with neuron nets.  
The simulation in the phase space can be used to find the 
switching function for the t-optimal control, because the 
part of the t-optimal phase trajectory is coincident with 
the switching function. The simulation runs on the system 
model (NN1). The switching function passes over the 
phase points, which are the simulation results. The 
approximation of the switching function with the NN2 can 
be improved, if the number of simulated phase points is 
higher. The t-optimal control has a special property for the 
actual value. If the control has to be optimal, the actual 
signal has to take only extreme values. 

The main task of the simulation is to simulate an 
inverse t-optimal control process. This process begins in 
the desired state (the system output and the desired value 
are identical) and then the maximal or minimal actual 
signal starts to switch. The phase points of this simulated 
process are saved for the NN2 training. The process of 
simulation for the second-order system in the phase space 
is shown in Figure 13. After successful simulation, there 
are two curves of phase points, which are used to 
approximate the t-optimal switching function via the 
neural network NN2. 
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Fig. 12 The simulation in the phase space for II.-order system 
 

Evidently the control time in second step is shorter 
than the time in first learning step. The desired control 
values were not identical. As the Figure 14 shows, the 
controller will work even with a noise in the measured 
signal of the carriage position.  
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Fig. 13 Real time simulation experiment for time suboptimal 

control loop with neuro net model. 
 

In case of higher-order system, the simulation will be 
more complicated. For instance, the 3-order system has to 
be simulated in a 3D phase space and the final t-optimal 
switching function can be represented as a 3D surface.  
The simulation consists of two actual combinations: 
maximal => minimal actual value 
minimal => maximal actual value  
All simulated phase points describe the shape of 3D 
switching surface. The simulation of the higher-order 
systems takes a lot of time, because the amount of 



simulated points increases with the phase space dimension 
rapidly. Choosing the rational precision of the 
approximation or disregarding the insignificant system 
orders can solve that problem. For simulation experiment 
(discrete simulation only) with third order system, which 
will be shown during presentation, was realized 5000 
points of phase trajectories. Neural nets NS2 were created 
from 3 layers and 13 neurons (6 input layers, 6 hidden 
layers 1 output layer). 

The last simulation experiments is comparison of two 
learning strategies, which can be seen on figure 14. There 
are the output signals, phase trajectories and switching 
functions for both strategies: First is computation of 
switching function during real time control from 
identification and second is computation of switching 
function after off line learned neuro nets. 
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Fig. 14 Comparison real time simulation experiments 
 
 

6. Conclusions 
 

In many practical applications especially in 
servomechanism, the t-optimal control problem is usually 
solved for desired system and then applied with the 
specific control rules. For class of second order systems 
with single input and single output sliding mode control 
are used. If the system is not stationary or there is a 
possibility of the system parameters change, the classical 
sliding mode control cannot be used and the learning 
controller based on sliding mode control could then assign 
the optimal control requirement. The paper describes three 
learning algorithms. The first is based on classical sliding 
mode control, the second on sliding mode control 
combined with the neural networks and the third is based 
on continuous computation of controlled process 
parameters and follow-up real time computation of 
switching curved line in every sampling interval, 

combined with state estimator. The first algorithm is the 
clearer one, but learns very slowly, because we have to 
measure 5 to 9 loop responses for one computation of 
switching function. The second algorithm, which uses 
neural networks, learns more quickly and to understand it 
fully it is crucial to know how the first one works. Both 
learning algorithms described in the paper set the t-
optimal switching surface for second order-controlled 
system. The combined algorithm with NN can do so even 
for third order-controlled system. The third algorithm is 
the best one from effectiveness point of view but cannot 
be used for problems where switching curved line is not 
known as a function. 
The only a priori condition is the existence of the initial 
stable control, for example the sliding mode control based 
on switching curve and switching line. Described 
algorithms were tested on laboratory equipment by real 
time simulation experiment. 
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