
1. SLIDING MODE CONTROL 
 

 Sliding mode control [Utkin] is a form of bang-bang control in which the plant state 
is forced towards and maintained within a close vicinity of a boundary determined by 
the control system designer. 
 
 
1.1. Variable Structure Concept and Phase Portrait 

 A variable structure system is defined as a dynamical system, which changes 
structure as a function of its state and external input variables.   

 The most often systems have two structures only, (S1) and (S2), between which 
it switches according to a switching function S(x,yr).  For illustration as example 
consider the variable structure system of Fig. 1.  The system consists of two 
integrators connected in cascade.  According to switch position if negative feedback 
is closed then system forms structure, (S1) and if positive feedback is closed system 
forms structure (S2). 
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Fig. 1.  Variable structure system for study of phase portrait 

 

 The state differential equations may be seen direct from block diagram of Fig. 1 as 
follows: 
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where q=-1 for structure S1 and q=1 for structure S2 .  If the second equation is divided 
with the first one, the separable differential equation has form:- 
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This is first order differential equation which has for non-zero initial states solution:-  
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 For structure S1 with q=-1 it represents a family of circles centred around origin and 
for structure S2 with q=1 it represents a family of hyperbolas symmetrical about the 
origin as it is shown in Fig. 2. 
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Fig. 2.  Phase portraits for variable structure separately 

 
 It is important to determine the direction of motion along the state trajectories.  This 
can be done by examination of the state differential equations.  Equation (1a) indicates 
that x1 must be increasing for x2>0 and similar way equation (1b) indicates that x1 must 
be decreasing for x2<0.   
 Next step is to determine closed-loop phase portrait.  For this purpose it is 
necessary to determine switching function for the switch S. In this special theoretical 
case two switching boundaries are determined as:- 
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 In this case the state trajectories for the complete variable structure system can be 
drawn for any initial state.  The switching always occurs when trajectories cross the 
switching boundaries defined as (4). Closed-loop phase portrait of variable structure 
system is shown in Fig. 3. 
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Fig. 3.  Closed-loop phase portrait of variable structure system 

 



1.2. Sliding Motion and Mode Control 
 
 
 Now it is possible to create control system, which has variable structure. If the 
original switch S is replaced with signum function and switching between two values of 
voltage Um is now determined by the control system designer then a practicable sliding 
mode controller shown in Fig. 4 is design:- 

 ( )SsignUu m=  (5)
where S is switching function.  Let for the second order control system is switching 
function S determined as:- 
 rrd TS ω−ω−ω= ω &  (6)
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Fig. 4.  A practicable sliding mode controller for SISO plant 

 
 The operation of such a control loop may be examined in the phase-plane, i.e, the 
graph of  against .  The control, u(t), switches between +Urω̂& rω̂ m and -Um , when .  
Setting this condition in (6) then yields the switching boundary.  This is shown in Fig. 5 
together with a family of state trajectories commencing from different starting points 
(referred to as a phase portrait). 
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Fig. 5.   Closed-loop phase portrait and switching boundary for sliding mode  control 

of SISO system 

 



 It is evident that over most of the boundary shown, the trajectories of the phase 
portrait are directed towards the boundary from both sides, meaning that once the 
boundary is reached, the trajectory is maintained close to it while the control variable, 
u(t), rapidly switches (control chatter).  This is the condition for sliding motion and the 
controller described is the classical sliding mode controller.  Under these circumstances, 
the closed-loop system obeys the switching boundary equation (7) shown in Fig. 5. 
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 The ideal sliding mode control system will have a control variable with an infinite 
switching frequency and continuously varying mark space ratio, holding the phase plane 
trajectory precisely on the switching boundary during the sliding mode.  In this case, the 
continuous short term mean control variable, obtainable by filtering out only the finite 
frequency components of u(t), would also hold the sub-state trajectory y(t), precisely on 
the switching boundary.  In this sense, the ‘continuous short term mean’ of control 
variable is equivalent to the ideal switch control.  For this reason the short term mean 
control variable is referred to as the equivalent control.   
 In the real system the variable structure exhibits sliding motion along the segments 
of a switching boundary towards which the state trajectories of the closed loop phase 
portrait are directed from both sides.  This is clearly evident from the sliding mode of 
phase trajectory shown in Fig. 6.  
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Fig. 6.  Sliding motion of the real variable structure system 
 
 In its basic form as t is shown in Fig. 4, sliding mode control is a form of bang-
bang state feedback control in which the control variable, u(t), switches between two 
limits of the opposite signs.  Bang-bang control systems are sometimes referred to as 
‘relay’ or ‘on-off’ systems [Jemeljanov, Utkin].  
 If, for a SISO plant, the state variables are chosen as the controlled output and its 
derivatives up to an order equal to ‘R-1’, where ‘R’ is the plant rank, then if the state is 
maintained precisely on the boundary, the closed loop dynamics is determined by the 
boundary alone and is independent of the plant parameters and any external 
disturbances.  As it can be seen from Fig. 6, the state point then appears to slide in the 
boundary.  Hence the term sliding motion is used.  Since the boundary is an ‘R-1’ 



dimensional hyper-surface in an ‘R’ dimensional output derivative space, the order of 
the closed-loop system in the sliding mode is always ‘R-1’.  This fact is made use of in 
the general sliding mode controller for SISO linear plant:- 
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 Corresponding control structure is shown in Fig. 7.  More general formula  for 
switching function is as follows:- 
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where is a vector of state variables comprising the controlled output 

and its derivatives and R is the rank of the plant (i.e. the number of poles minus number 
of zeros of the transfer function in the case of a linear plant).  Whenever the switching 
function S changes its sign what corresponds to equation:- 
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all the values of y at which switching of u(t) takes place are determined what is referred 
as a boundary equation. 
Fig. 7 shows general sliding mode control system for SISO linear plant. 
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Fig. 7  General sliding mode control system for SISO linear plant 

 
 In the ideal system where the switching in the sliding mode is at an infinite 
frequency, equation (6) governs the closed-loop behavior and since  and yx1 = yx 2 &= , 
the closed loop system is linear with a first order transfer function (7),  The important 
observations to be made here are: 
a) The system is extremely robust since transfer function (7) is  independent of the 

plant parameter and the load torque (referred to the control voltage), u(t). 
b) The closed-loop system is only of first order despite the plant being of second order.  

This is due to one degree of freedom of movement in the state space being removed 
by the control law forcing the trajectory to move along the switching boundary. 

c) The settling time, , may be chosen and the closed-loop time constant is sT
3TT s=ω . 



 It is important to realize that the above ideal characteristic (a) cannot be attained 
precisely in practice due to the finite sampling frequency of the digital implementation 
and any dynamic lags that are not taken into account (such as the armature time 
constant in the d.c. drive example).  The performance of a practicable sliding mode 
control system must be predicted by an accurate simulation. 
 
 
1.3. Elimination of Control Chattering  

 In some applications, the rapid switching of the control variable, referred to as 
control chatter, is undesirable.  A common method for eliminating this is to replace the 
signum function of the control law:- 
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Fig. 8a,b.  Two common smooth approximations of the signum function 
 
 In the case of Ambrosino’s approximation, (11), the control never reaches the 
saturation limits but asymptotically approaches them as S increases in magnitude.  A 
sharp transition of the control between extreme values approaching saturation occurs 
whenever S changes sign. 

 A similar performance results from using the saturation function (12), see Fig. 8b.  
In this case, the switching boundary is replaced by a finite control transition region 
called the boundary layer, outside of which the control saturates at mU± . 

 
 A completely different approach is to insert a smoothing integrator between the 
rapidly switching control variable (renamed now as u’(t)) and actual control variable 
u(t) applied to plant.  The control smoothing integrator may be considered as a part of a 
new plant to be controlled.  It means that the rank of the original plant was increased by 
one unit.  Therefore it is necessary to include one more derivative due to order ‘R+1’of 
a ‘new’ system as it is shown in Fig. 9. 
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Fig. 9.  SMC system with control smoothing integrator 

 
 The effect of the smoothing integrator on control variable u(t) can be clearly 
observed from Fig, 10.   
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Fig. 10.  Control variable u(t) of SMC system with control smoothing integrator 

 
 
1.4. Sliding Mode Control of an Induction Motor 

 Consider now the closed-loop system which consists of non-linear control law 
based on feedback linearisation and induction motor, which has the nominal transfer 
function (13). 
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 Since the IM is inherently nonlinear, errors introduced by uncertainties of its 
parameter will cause the linear dynamics of (7) to become nonlinear.  It may be shown, 
that the sliding mode outer control loop can compensate for this.  To illustrate this 



action more simply, let parametric uncertainties, external load torque and imperfect 
operation of the inner control loop due to the non-zero iteration interval will (roughly) 
be represented by a change of time constant and DC gain.  Then the combined inner and 
middle loop dynamics resulting from the aforementioned errors and disturbances may 
be represented by the transfer function:- 
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where  and .  In order to create a sliding mode control loop that 
does not reduce the system order (equal to the rank without transfer function zeros), which 
is required to yield the closed-loop system dynamics of (7), a smoothing integrator is 
introduced at the speed reference input of the middle control loop.  It increases its order by 
one before formation of the sliding mode outer loop.  Fig. 11 shows this, treated as a new 
plant with control variable, u , and with the outer loop controller. 
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Fig. 11.  Sliding mode based outer control loop 

 

 Since an angular acceleration as derivation of angular speed would be a subject of 
substantial noise contamination, an opportunity to use an equivalent outer loop control 
algorithm avoiding this is taken.  With reference to Fig. 12, the integrator effectively 
cancels the differentiation in the inner feedback loop.  The resulting block diagram is 
shown in Fig. 12 and this yields the SMC based control algorithm of equation (15). 
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Fig. 12.   SMC based outer control loop implemented in experiment with induction 

motor 

 The experimental results with this structure are shown in Fig. 13.  In all the graphs 
presented, the stator current and rotor magnetic flux components as functions of time 
during the starting interval t∈(0-0.1) s are shown in subplots (a).  The estimates of the 



rotor speed from the pseudo-sliding mode observer are shown in subplots (b) as 
functions of time for the whole data logging interval.  Plots (c) show the load torque 
estimate, , from the filtering observer together with the rotor magnetic flux norm 
estimate ||Ψ||.  Finally, subplots (d) show the ideal rotor speed, ω

LΓ̂

id ,  together with real  
rotor speed, ωr, and its estimate, , from filtering observer for the whole data logging 
interval.  The simulation and experimental results are plotted, respectively, in the left 
and right columns. 

rω̂
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a1)  Stator current and rotor mg. flux 

components - simulation 
a2)  Stator current and rotor mg. flux 

components - experiment 
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b1)  Estimated, unfiltered rotor speed from 

pseudo-sliding mode observer  
b2)  Estimated rotor speed from pseudo-

sliding mode observer 
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c1)  Estimated rotor mg. flux norm and 
load torque from filtering observer  

c2)  Estimated rotor mg. flux norm and 
load torque from filtering observer  
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d1)  Ideal speed response, real and 
estimated rotor speed – simulation 

d2)  Ideal speed response, real and 
estim. rotor speed - experiment 

Fig. 13.  Speed response and corresponding state variables with sliding mode based 
outer control loop 

 



1.5. Sliding Mode as an Observation Tool 
 
1.5.1. Pseudo-Sliding Mode Observer for Rotor Speed 

 
 The following non-linear differential equations formulated in the magnetic field-
fixed (d_q) co-ordinate system describe the permanent magnet synchronous motor:- 
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Magnetic fluxes of the motor are described as:- 
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The basic ‘stator current vector pseudo sliding-mode observer’ is based on equation 
(16a) as a real time model but purposely omitting all terms containing ωr and using only 
the last term.  Thus:- 
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where veq d and veq q are the model corrections, i*
d and i*

q are estimates of id and iq as in a 
conventional observer.  These, however, are not used directly. The useful observer 
outputs here are the continuous equivalent values, (i.e., the short term mean values), of 
the rapidly switching variables v;- 
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Equation (19), of course, cannot directly generate veq .  Instead, a pseudo-sliding-mode 
observer may be formed by replacing equation (19) with:- 
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where KSM is made as high a gain as possible within the stability limit set by the 
iteration period of the control algorithm.  For large KSM the observer correction inputs 
closely approximate the terms missing from the real time model, as seen in equation 
(16a).  Thus:- 
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and an unfiltered angular velocity estimate, , can be extracted from equation (21).  

The following one of three possible formulae was found to yield the minimum 
sensitivity to stator current ripple when using the bang-bang algorithm for control of 
currents:- 
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where the constant motor parameters are replaced by their estimates. 
 
 
1.5.2. Filtering Observer  

 
 If stator current measurement noise is significant, then the system performance will 
be improved by the provision of filtering.  The filtering observer presented produces a 
filtered angular velocity estimate, $ω r  in a similar fashion to a Kalman filter.  Finally, 

there is no direct means of measuring the external load torque, ΓL .  This problem may be 
easily solved, however, by treating ΓL as a state variable and including its estimate in the 
real time model of the observer.   
 The observer is based on torque differential equation of the motor (16b) and 
differential equation for load torque, which is assumed constant and so its state equation 
is .  Thus, the combined rotor speed and load torque filtering observer is as 
follows:- 
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 This is a second order linear observer with a correction loop characteristic 
polynomial, which may be chosen via the gains, and , to yield the desired balance 
of filtering between the noise from the measurements of  and  and the noise from 

the angular velocity measurement, ω .  Filtered values of 
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with this linear observer by the adjustment of the one parameter, , only.  This is the 
prescribed steady-state time for observer, which can be determined as:- 
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 With respect of settling time formula (24) for n=2, ωn=9/(2Ts), the observer poles 
can be designed as comparison of left hand side equation wih demanded polynomial and 
right hand side equation of filtering observer characteristic polynomial:- 
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 A modified version of the observer based on pole placement at two different 
locations,  and 1ω− 2ω− , which shows higher stability, was used for design of observer 
gains  and .  Thus:- ωk Γk
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  and ( 21k ω+ω=ω ) 21Jk ω⋅ω⋅=Γ  (26b)

 
 Block diagrams of pseudo-sliding mode (simplified for current torque component, 
iq , only) and filtering observer are shown in Fig. 14a,b.  
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a)  Pseudo-sliding mode observer b)  Filtering observer 

Fig. 14.  Block diagrams of pseudo-sliding mode and filtering observer 
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