
4. SHAFT SENSORLESS FORCED DYNAMICS 
CONTROL OF RELUCTANCE SYNCHRONOUS 

MOTOR DRIVES 
 
4.1. VECTOR CONTROLLED RELUCTANCE 

SYNCHRONOUS MOTOR DRIVES WITH 
PRESCRIBED CLOSED-LOOP SPEED 

DYNAMICS 
 

Abstract:  A new speed control system for electric drives employing reluctance 
synchronous motors (RSM) is presented.  The basic control system is similar to 
that presented in section 3 for PMSM, but for completeness of the presentation, 
some repetition is entailed.  The usual vector control method is complemented with 
forced dynamic control instead of the PI control found in conventional drives.  This 
initial study is restricted to speed control with the linear first order dynamic mode 
in which the closed-loop system response is first order with a pole location chosen 
by the user.  To improve robustness of the closed-loop performance, an outer 
control loop based on model reference adaptive control (MRAC) is added.  
Simulation results presented show good correspondence with the theory and predict 
substantial robustness improvements with the aid of MRAC. 
 
4.1.1 Introduction 

In contrast to conventional approaches to electric drive control, a new control 
strategy for reluctance synchronous motors (RSM) is presented based on forced 
dynamic control (FDC).  The combined RSM and load are viewed as a 
multivariable plant, the control, measurement and controlled variables being, 
respectively, the stator voltages, the stator currents, and the rotor speed.  Like the 
systems described in previous chapters, a current control loop is closed via the 
power electronic switches so that the stator current demands become the control 
variables for the FDC based speed control loop.  This embodies RSM vector control 
[1] and generates automatically stator current demands such that the rotor speed 
responds to the speed demand with the prescribed dynamics of the selected 
dynamic mode (ref., Chapter 1) which, in this case is the linear first order mode.  



The new RSM drive control system embodies the block control principle [2], the 
motion separation principle [3] and sliding mode control [4]. 

The new RSM control system comprises two parts: a) the control law 
comprising master and slave control laws arranged in a hierarchical structure [2] 
and b) the state estimation and filtering system, comprising a complementary set of 
two observers, one used for reconstruction of the rotor speed, and the other for 
external load torque estimation [5].  Fig.4.1.1 shows the control system structure 
and its operation, the individual blocks being fully explained in the following 
sections. As in the previously described IM and PMSM drives, this drive may be 
included as an actuator in a larger scale control scheme to which linear control 
system design methods can be applied. 

The same approach has also been investigated for permanent magnet 
synchronous motor drives [5], [6] and preliminary experimental results were 
presented in [7].  The master control law is operated in the linear first order 
dynamic mode in which the rotor speed is controlled with linear, first order closed-
loop dynamics, the closed-loop time constant being chosen by the control system 
designer.  In this initial investigation, the motor is assumed to drive a rigid body 
inertial load with moment of inertia, J, zero friction and subject to a constant 
external load torque, ΓLe. 
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Fig. 4.1.1   Overall control system block diagram 
 

4.1.2 Control System Development 
 
 

2a) Model of Motor and Load  

The following set of non-linear differential equations formulated in the 
rotating d, q co-ordinate system, coupled to the rotor, describe the RSM and form 
the basis of the control system development: 
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dt
dR ω++=  (4.1.1) 
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where, is=id + jiq,  us=ud + juq and Ψs=Ψd + jΨq are, respectively, the stator current, 
stator voltage and magnetic flux,  is the rotor velocity, p is the number of stator 

winding pole pairs, ΓL is the external load torque, Rs is the phase resistance, Ld and 
Lq are the direct and quadrature phase inductances and c5=3p/2.  The ALA (axially 
laminated anisotropic material) RSM parameters assumed in this study are listed 
in the Appendix.  The last term in (4.1.2) is obtained by noting that the magnetic 
flux components are given by Ψd=Ld(id).id  and Ψq=Lq.iq. 
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2b) Master control law 

The basic philosophy of the forced dynamic control law development is the 
formulation of linearising functions, in this case embodying vector control, which 
force the nonlinear plant (i.e., the RSM and its load) to obey specified linear 
closed-loop differential equations, which in this case is a first order equation for the 
rotor speed yielding a dynamic response to a demanded speed, ωd(t), with  
a prescribed time constant, Tω.  The rotor speed therefore is made to satisfy: 

 ( )d
dt T

r
d r

ω
ω ω

ω
= −

1
.  (4.1.3) 



The rotor speed linearising function is chosen to force the non-linear 
differential equation (4.1.2) to have the same response as the linear equation 
(4.1.3).  The linearising function is obtained simply by equating the right hand 
sides of (4.1.2) and (4.1.3), as follows: 

 ( )[ ] ( )1 1
5J

c i i
Td q q d L d rΨ Ψ Γ− − = −

ω
ω ω .  (4.1.4) 

 In the control law to be derived, estimates of the magnetic flux components, 
Ψd and the Ψq are evaluated from the known stator currents, id and iq, by the 
magnetic flux calculator which takes into account the variations of the direct 
inductance, Ld as a function of the current, id, in the direct axis (see Appendix) 
while the quadrature inductance, Lq, is taken as a constant: 

 ( )Ψd d dL i i= d⋅    and   Ψq qL i= q . (4.1.5) 

 Mathematically, there are infinitely many combinations of id and iq that may 
be chosen to satisfy (4.1.4).  This enables the first part of the control law to be 
formulated on the basis of vector control [1].  Two vector control options will be 
presented.  The first ensures that the maximum torque per unit of stator current is 
obtained.  This requires the maximum practicable constant value, , of the stator 
current component, , up to the base speed and not to allow its reduction under 
the prescribed value when the RSM is idle running.  Above the base speed, id is 
reduced to ensure correct operation of the control system is maintained by keeping 
the magnitude of the back e.m.f. below the d.c. link voltage.  Thus: 
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(4.1.6a) 

Alternatively, for maximum power factor the current, id can be determined from 
(4.1.6b) as: 
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(4.1.6b) 

 



where δ is the angle of current vector in d, q system.  Equation (4.1.6b) is based on 
a standard condition for maximum power factor for RSM [1] in which the motor is 
assumed to rotate at constant speed in one direction, and so the term, 

( ) LrdT
J

Γ+ω−ω
ω

, would not go negative.  The fact that it can do so in the drive 

control system presented is taken into account in the formulation of the master 
control law below. 

 The master control law generates the demanded values of  id  and  iq, which 
will be denoted respectively by id_d  and iq_d, on the assumption that the inner 
current control loop (slave control law) ensures that d_dd ii ≅   and  .  

Equation (4.1.6a) or equation (4.1.6b) are then used to evaluate id_d and then 
equation (4.1.4) is solved for iq_d , yielding the second part of the master control 
law.  Thus, using the flux estimates from equation (4.1.5), and the load torque 
estimate, , from the observer of section 3.2, the following master control laws 

are derived, one for each of the two vector control options: 
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a)  for maximum torque per unit of stator current: 

 ( )

( ) *
dKqd5

Lrd

d_q

*
dKd_d

iL~L~c

ˆˆ
T
J~

i

ii

−

Γ+ω−ω
=

=

ω

 

 
 

(4.1.7a) 

b)  for maximum power factor: 
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(4.1.7b) 

 The estimates of all constant parameters, p, used in any model-based 
control law cannot be known with infinite precision, and are therefore denoted by 
~p  as for the control laws derived in the previous chapters. 



2c) The slave control law 

 The slave control law closes the stator current control loop and is the same as in 
all the drive control systems presented in the previous chapters.  The sub-plant to be 
controlled here is defined by equation (4.1.1), the control variables now being ud and 
uq and the output variables id and iq to respond to the demanded currents id_d  and iq_d.  
The slave control law is the following bang-bang control law: 

 ( ) c,b,aj,iisgnUu jd_jsj =−= , (4.1.8) 

where generally the transformations between the d, q components of the stator 
currents and voltages and the corresponding three-phase stator voltages and 
currents are given by: 
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(4.1.9) 

 A special starting algorithm with constant current id and iq demands comes 
into play while the magnetic flux norm, Ψ , builds up and control is handed over 
to the master control law of the previous section only once Ψ  has risen above a 
pre-set minimum threshold.  As in the previous drive control systems presented, the 
magnetic flux norm is defined as: 

 Ψ Ψ Ψ= +d q
2 2 . (4.1.10) 

 
 
4.1.3 State Estimation  and  Filtering 

 The load torque estimate, which is necessary for the master control algorithm 
is gained in a similar way to that of [5] and [6] for synchronous motor drives.  
First, a stator current vector pseudo sliding-mode observer is formulated for 
generation of an unfiltered estimate of the rotor speed.  Second, the load torque 
estimate required by the master control law is provided by a standard observer 
having a similar structure to a Kalman filter, a direct measurement of load torque 
being assumed to be unavailable.  It should be noted here that this load torque and 
filtered speed observer is identical in form for all the drive control systems, but the 
electrical torque input to the real time model is calculated using a different equation 
for each type of motor. 



3a) The pseudo sliding mode observer and angular velocity extractor 

The real time model of the system is based on the stator current equation 
(4.1.1) fed by the measured stator voltages and stator currents, but purposely using 
only the terms without the rotor speed, ωr.  Thus: 
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(4.1.11) 

where veq d and veq q  are the model corrections and i*
d  and i*

q  are estimates of id 
and iq as in a conventional observer.  The useful observer outputs of the classical 
sliding mode observer would be the continuous equivalent values of the rapidly 
switching variables: 
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 Rather than compute this using a low pass filter, a pseudo-sliding-mode 
observer may be formed to obtain close approximations to veq d and veq q by 
replacing equation (4.1.12) with (4.1.13): 
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where the gain, Ksm, is made as high as possible within the stability limit set by the 
sampling time of the digital processor.  For large Ksm, the errors between real motor 
currents and fictitious observer currents are driven almost to zero, resulting in 
(4.1.14): 
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(4.1.14) 

 

The right hand side contains the terms involving ωr that were omitted from the real-
time model.  An unfiltered rotor speed estimate, , can then be ‘extracted’ from ∗ωr



equation (4.1.14).  The component, veq q of (4.1.14), has been found to have lower  
noise levels than veq d and is therefore used alone to generate ω  : 

r
∗
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3b) The Load Torque Observer 

 Simple direct means of measuring the external load torque, ΓL are not 
available.  This is estimated by an observer that is identical in basic form to those 
of the drive control systems presented in the previous chapters.  The details are 
given again in the interests of self-containment of this chapter and the fact that the 
electrical torque equation differs from one motor type to the next. 

 The problem of load torque estimation is easily solved by treating ΓL as a state 
variable and including its estimate in the real time model of an observer.  If the 
stator current measurement noise is significant, then the system performance will 
be improved by using the angular velocity estimate, rω̂ , from the observer, which 
is a filtered version of ω*

r.  The observer presented produces this filtered angular 
velocity estimate, without introducing a dynamic lag, which would impair the 
control system performance, in a similar fashion to a Kalman filter.  The observer 
produces also a filtered rotor speed estimate and this is used in the control 
algorithm as well as the load torque estimate. 

 The real time model of the observer is based on torque equation (4.1.2).  The 
observer correction loop is actuated by the error between the rotor speed estimate, 
ω*

r, from the angular velocity extractor of the previous section and the estimate, , 
from the real time model: 
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 Since 
r
 is a filtered version of ω*

r  it is used directly in the master control law.  

This is a conventional second order linear observer with a correction loop 
characteristic polynomial, which may be chosen via the gains,  kω and kΓ, to yield 
the desired balance of filtering between the noise from the measurements of the 
currents id and iq and the noise from the velocity measurement, ω*

r. 

ω̂

 
 
4.1.4 Model Reference Control Based Outer Loop 

 To improve the robustness of the drive control system described in the 
previous sections an outer control loop based on model reference adaptive control 
(MRAC) may be formed.  This is identical to that presented for the PMSM drive 
and so the reader is referred to section 3.2.3 for this. 
 
 
 
4.1.5 Simulation Results 

All the simulation results are presented in Fig. 4.1.2, Fig. 4.1.3, Fig.4.1.4 and 
Fig. 4.1.5.  They were carried out with a computational step of Δt=5e-5 s, which 
corresponds to a sampling frequency of 20 kHz for digital implementation.   

 All the simulations are carried out with zero initial state variables and a 
step rotor speed demand of ωd = 100 rad/s.  A step external load torque of 
ΓL=2,5 Nm equal to the nominal motor torque is applied at t = 0,2 [s], being 
zero for time interval s2,0t0 <≤ .  The response of the new basic forced 
dynamic control system operating in the linear first order dynamic mode is 
simulated first to illustrate the operation with the two alternative vector control 
options of the master control law defined by equations (4.1.7a) and (4.1.7b).  
The results are shown in Fig. 4.1.2 for maximum torque per unit stator current 
(id = const) and in Fig. 4.1.4 for id controlled to yield the maximum power 
factor.  These are then compared with the corresponding responses of the same 
control system augmented by a MRAC based outer loop and the simulation are 
shown in Fig. 4.1.3 and Fig. 4.1.5. 
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a)  id = f(t), iq = f(t) b)  Ψd = f(t), Ψq = f(t) 
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c)  Ld = f(t) d) iα = f(t), iβ = f(t) 
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e) Ψα = f(t), Ψβ = (t) f)  Γel = f(t), ΓL = f(t), = f(t) $ΓL
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g)  ωid = f(t), $ω r = f(t) h)  ωid = f(t), ωr = f(t) 

Fig. 4.1.2   Vector control with id=const 
 

 In all the figures the subplots (a) and (b) show the demanded and real values 
of the current components and real values of the magnetic flux components in the  
d, q rotor fixed frame. The changes of the direct inductance, Ld due to changes in the 
direct current, id, are shown in subplot (c).  Subplots (d) and (e) show the stator 
currents and magnetic flux components viewed in the stator fixed α, β frame.  
Subplot (f) shows the initially exponentially decaying motor torque and the applied 
load torque, ΓL together with its estimate Γ^

L.  The estimated values of the load 



Torque from the observer may just be seen to follow the step increase in load 
torque at t = 0,2 s with a small dynamic lag according to Ts0 = 50 ms.  This gives 
rise to the small transient reduction in the rotor speed just after t = 0,2 s.  The speed 
estimate from the filtering observer together with the ideal speed response are 
shown in subplot (g).  Apart from the transient due to a small lag in load torque 
estimation, the required first order speed dynamics with a prescribed time constant 
of Tω = 0,05 s is evident from the motor speed response, which are shown in 
subplot (h) together with the ideal one. 
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c)  Ld = f(t) d) iα = f(t), iβ = f(t) 
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e) Ψα = f(t), Ψβ= (t) f)  Γel = f(t), ΓL = f(t),  = f(t) $ΓL
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g)  ωid = f(t), $ω r = f(t) h)  ωid = f(t), ωr = f(t) 

Fig. 4.1.3   Vector control with id=const and MRAC 
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c)  Ld = f(t) d) iα = f(t), iβ = f(t) 
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e) Ψα = f(t), Ψβ = (t) f)  Γel = f(t), ΓL = f(t), = f(t) $ΓL
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g)  ωid = f(t), $ω r = f(t) h)  ωid = f(t), ωr = f(t) 

Fig. 4.1.4  Current d, q angle control for maximum power factor 
 

 The control law parameters for all the simulations were as follows: master 
control law closed-loop time constant: Tω=0,05 s; observer filtering time constant: 
Ts0= 0,05 s; pseudo sliding mode observer model correction loop gain: Ksm=16000.  
In all these simulations perfect matching between the motor parameters and those 
assumed in the control laws and observers are assumed. 
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a)  id = f(t), iq = f(t) b)  Ψd = f(t), Ψq = f(t) 
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e) Ψα = f(t), Ψβ = (t) f)  Γel = f(t), ΓL = f(t), = f(t) $ΓL
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g)  ωid = f(t), $ω r = f(t) h)  ωid = f(t), ωr = f(t) 

Fig. 4.1.5  Current d, q angle control for maximum power factor with MRAC 
 

 A substantial improvement of the drive performance for both control 
algorithms can be seen when the MRAC outer loop is added (Fig. 4.1.3 and Fig. 
4.1.5).  While compensation of the angular speed drop due to application of 
nominal load torque takes approximately 0,2 s for the basic algorithms, this is 



compensated in 0,05 s by the MRAC outer control loop.  Also the absolute value  
of speed drop is nearly four times lower with the MRAC augmentation, when 
compared with the basic system combining forced dynamic control and the 
standard vector control. 
 
 
4.1.6 Conclusions and Recommendations 

 The simulation results of the proposed new control method for electric drives 
employing RSM with forced dynamics show a good agreement with the theoretical 
predictions.  The only substantial departure of the system performance from the 
ideal is the transient influence of the external load torque on the demanded rotor 
speed.  Although this effect is not too serious, its considerable reduction with the 
aid of a MRAC based outer control loop were verified. 

 Some preliminary investigations to test the robustness to motor parameter 
mismatches show promising results which are not published here due to space 
limitations, especially when the amount of results is doubled when the MRAC outer 
control loop is added.  Further investigations of robustness, however, should be 
carried out, particularly with regard to dynamic load parameter mismatches and 
time varying external load torques. 

 It is highly desirable to further investigate the proposed control strategy 
experimentally with a new ALA RSM described in [8]. 
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Appendix 

Reluctance synchronous motor parameters:   

Nominal voltage 380 V (for Y) Stator resistance Rs = 8.62 Ω 
Nominal current 2.01 A Quadr. inductance Lq = 161.8 mH 
Rated power 400 W Number of polpairs p = 2 
Inverter dc voltage 550 V Moment of inertia J = 0.0021 kgm2 

Polynomial approximation of the direct inductance Ld(id) in the working range of 
stator currents:  Ld  = 0,2913.id

2  – 1,0755.id + 1,4  [H; A] with condition:  
if Ld < 0,45 then Ld = 0,45. 
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