
3.2. MODEL  REFERENCE  ADAPTIVE  CONTROL  OF  
PERMANENT  MAGNET SYNCHRONOUS  MOTOR  

DRIVE WITH  FORCED  DYNAMICS 
 
 
 
Abstract:  A speed control system for electrical drives employing 
synchronous motors (SM) is presented offering high robustness to 
parameter uncertainties and external load torques.  A triple-loop cascade 
control structure is employed in which the inner loop is a stator current 
control loop and the middle loop is a shaft sensorless speed control loop, 
which is based on the forced dynamic control principle.  Forced dynamic 
control, as well as converting the non-linear SM into a linear element, alone 
offers generally higher robustness than conventional shaft sensorless vector 
control methods, through using a time-varying load torque estimate.  This 
robustness is further improved here by adding an outer loop based on the 
model reference adaptive control (MRAC) principle, which is an alternative 
technique to the sliding mode control outer loop presented in section 2.3. 
Any of the forced dynamic modes presented in Chapter 1 can be used and 
results are presented here for the constant acceleration, linear first order 
and linear second order modes.  For simplicity, the outer MRAC control 
loop is introduced with the middle loop operating in the linear first order 
mode, which yields a first order closed-loop system whose pole location can 
be chosen by the user.  Also, in this mode (and any other linear mode) the 
drive may be included as an actuator in a larger scale control scheme to 
which linear control system design methods can be applied.  Experimental 
results presented show good correspondence with theoretical predictions. 
 
 
 
 
 
 
 
 
 
 



3.2.1 Introduction 

 The addition of an outer loop employing a robust control technique, in this 
case MRAC, to improve robustness is applicable in many control applications 
and it should be noted that it may be used for induction motor drives as well as 
SM drives.  It is necessary, however, for the basic control system around which 
the robust outer loop is closed to yield dynamics of known order (first order in 
the case under study). In view of its importance, the basic control system 
development is completely described below, prior to introduction of the robust 
outer loop, and this entails some repetition of material presented in previous 
sections. 

 In recent years „sensorless“ or „self-sensing“ control of AC machines has 
been extensively researched.  The cost and reliability advantages, when 
mechanical sensors and connection cables are eliminated for the measurement 
of position or velocity to close a feed-back loop, have been the driving force 
behind this research activity. 

 The basic drive system without the outer loop is based on the new control 
method of electric drives employing SM introduced in section 3.1.2.  Forced 
dynamic control yielding the first order linear dynamic mode is a form of 
feedback linearisation [1] and it is made possible by employing an inner current 
control loop and an observer for rotor speed estimation based on the sliding 
mode control principle [2].  This approach was introduced in [3] and [4].  The 
system operates without shaft sensors, only the stator currents being measured, 
the applied stator voltages being determined by the computed inverter switching 
algorithm and with a knowledge of the DC link voltage.  The prescribed 
response to the reference speed has linear first order dynamics, together with 
the vector control condition of mutual orthogonality between the stator current 
and rotor flux vectors (assuming perfect estimates of the motor parameters).  
The original basic SM drive control system with forced dynamic control which 
contains, in addition, a set of two observers for estimation of the rotor speed 
and the load torque using the magnetic flux components from a flux estimation 
algorithm was shown in Fig. 3.1.1. 

 

 



 Forced dynamic control is applicable in many non-linear multivariable 
automatic control applications and originally was developed for electrical drives 
with induction motors and later applied also for electric drives with SM [5].  
The drive presented here would be very convenient also as an inner speed 
control loop for a position servo-system. 

 Since the control law itself, the magnetic flux calculator, the rotor speed 
observer and load torque observer are all model-based, i.e., dependent on estimates 
of the motor parameters, then some sensitivity to the errors in these estimates 
would be expected.  This means that the closed-loop performance of the whole 
control system will be affected, to some extent, by errors in the aforementioned 
estimates.  The intention here is to reduce this sensitivity by closing a simple model 
referenced adaptive control loop around the original close-loop system and to 
improve the robustness of the whole control system.  This results is the overall 
control block diagram shown in Fig. 3.2.1. 

 
 

 
  OUTER 
  LOOP 

CONTROLLER 
 
 

 
  MIDDLE 

  LOOP 
CONTROLLER 

 
 

 
 INNER 
  LOOP 

CONTROLLER 
 
 

 
  POWER 

   
ELECTRONICS 

 
 

Synchr. 
motor 
 

SA 
 

SB 
 

SC 
 

Udc 
 

 ia 
 ib

Udc 
 

 ia d 

 ic d 

 ib d 

L1 
 L2 
 L3 
 

ωd 
 

ω’
d  

 

ω^r    
 

 

Fig. 3.2.1   Modified block diagram of the overall control system with MRAC 
 
 
 
 
 



3.2.2 Control System 
 
 
2a) The middle loop controller 

 The forced dynamic control law is embodied in the middle loop controller.  
This control law forces the SM rotor speed estimate, rω̂ , to follow the 
corresponding demand, ω‘r, from the outer loop controller with a linear, first order 
dynamic lag having a chosen time constant of Tω.  This in turn, causes the real SM 
rotor speed, ωr, to be controlled to an accuracy dependent on the closeness with 
which the estimate, rω̂ , follows real  ωr.  This controller also contains rotor speed 
and load torque estimation algorithms using the measured stator currents, ia, ib, and 
ic, together with the measured voltage of the DC supply and the computed stator 
voltages, ua, ub, and uc, from inverter switching algorithm. 
 
 
2b) Model of Motor and Load 

 The permanent magnet SM model in the rotating d, q co-ordinate system is 
used: 
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where  id,  iq  and  ud,  uq are, respectively, the stator current and voltage 
components,  ωr is the rotor angular velocity  and  ΓL is the external load torque.  
Three-phase SM Andover  4ANTS  SP 10 5AB parameters are as follows: Pn = 
400 W at  nn = 3000 rpm,  2p = 6;  RS = 36,5 Ω,    Ld = 50 mH,   
Lq = 50 mH,  ΨPM  = 0,312 Wb and the lumped moment of inertia is  
J = 0,003 kgm2. 
 
 
 



2c) Master control law 

 This is based on linearising functions [1], which force a non-linear system to 
obey specified linear closed-loop differential equations: 
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Equation (3.2.3) for the rotor angular velocity is made to follow equation (3.2.4) by 
equating the right hand sides: 
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The rotor magnetic flux calculator estimates the individual magnetic flux 
components, Ψd and Ψq , for the control algorithm: 
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(3.2.6) 

 The second part of the control law is formulated on the basis of the PMSM 
construction, when maximum torque sensitivity is achieved with: 

 . id = 0 (3.2.7) 

Taking into account equation (3.2.7) the required iq can be found from (3.2.5).  
These two current components are then used to generate the demanded values of  id  
and iq  which are denoted as id_d  and iq_d .  In the implemented control law the 
previously defined state variables and motor parameters have to be replaced by 
their estimates: 
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This is the basic master control law, which may be used for all the operational 
modes.  As mentioned previously, this requires a load torque estimate and a means 
of obtaining this is presented in the following section. 



2d) State Estimation and Filtering 
 
2d1)  The pseudo sliding mode observer and angular velocity extractor 

 Modified version of the stator current vector pseudo sliding-mode observer is 
based on equations (3.2.1) and (3.2.2) as a real time model but purposely using only the 
terms without ωr, these being replaced by the model correction inputs, veq d and veq q.  
Thus: 
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where i*
d  and i*

q  are estimates of id and iq as in a conventional observer.  In a 
classical sliding-mode observer, the useful outputs are the continuous equivalent 
values of the rapidly switching variables: 
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This, however, does not directly generate veq d and veq q.  To achieve this, a pseudo-
sliding-mode observer [4] may be formed by replacing equation (3.2.11) with: 
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where the gain, Ksm, is made as high as possible within the stability limit set by the 
sampling time of the digital implementation.  For large Ksm, the errors between the 
real currents and the estimated currents from the observer are driven almost to zero, 
resulting in (3.2.13): 
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and this may be manipulated to yield an unfiltered rotor speed estimate, ω*
r.  Thus: 
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2d2) Observer for Load Torque Estimation and Rotor Speed Estimate Filtering 

 The load torque estimate required by the master control law is provided here 
by a standard observer having a similar structure to a Kalman filter, a direct 
measurement of this variable being assumed to be unavailable.  The real time model 
of this observer is based on the motor torque equation (3.2.3).  The observer 
correction loop is actuated by the error between the rotor speed estimate, ω*

r, from 
the angular velocity extractor of the previous section and the estimate, , from the 
real time model.  The observer equations are: 
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Since  is a filtered version of ω*
r  it is used directly in the middle and outer loop 

controllers.  This is a conventional second order linear observer with a correction 
loop characteristic polynomial, which may be chosen via the gains,  kω and  kΓ, to 
yield the desired balance of filtering between the noise from the measurements of id 
and iq and the noise from the angular velocity measurement, ω*

r. 
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a)  Pseudo-sliding mode observer b)  Filtering observer 

Fig. 3.2.2  Modified block diagrams of pseudo-sliding mode and filtering observer 
3.2.3 Outer Loop Controller 

 Since, as stated previously, the middle loop controller is model based, i.e., it 
contains algorithms depending on estimates of the motor and load parameters, the 
closed-loop performance will be affected by errors in these estimates.  In particular,  
errors in the estimate of the external load torque, ΓL, will affect the closed-loop 
performance.  Let the errors introduced by the motor parameter uncertainties, load 
torque estimate and imperfect operation of the middle control loop due to the non-
zero iteration interval be (roughly) represented by a change of time constant and 
DC gain.  Then the real system, formed by the inner and middle control loops can 
be represented by the following transfer function: 
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 The purpose of the outer loop controller is to improve the robustness of the 
overall control system against uncertain parameters and load torque estimation 
errors.  The outer control loop controller is MRAC based.  The model is simply the 
nominal transfer function that would be yielded by the inner and middle loop in 
perfect operation: 
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Figure 3.2.3 shows the outer model reference control loop using this model. 
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Fig. 3.2.3  Model reference based control loop 

 The demanded rotor speed,  ω‘
d, is applied to the basic real system formed by 

the inner and middle control loops.  Any mismatch between the real system and the 
closed-loop reference model then gives rise to a correction,  KMR

.(  - ωid), 
applied to the real system to force it to follow the model.  As the model reference 
control loop gain, KMR, is increased, then, in theory, the error, , is 
reduced, thereby causing the real system to be ‘slaved’ to the model.  Applying 
Mason’s formula to Fig. 3.2.3 yields (3.2.18):  
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Thus, as KMR, tends to infinity, the transfer function between the estimated speed 
and the demanded speed tends to the demanded transfer function (3.2.19), 
predicting the required robustness: 

 
( )
( ) ω+

→
ω
ω

sT1
1

s
sˆ

d

r   for   ∞→mrK  
 

(3.2.19) 

 In practice, however, any un-modelled plant dynamics and the non-zero 
sampling time of the digital processor will limit Kmr.  A shortfall in robustness 
would still be expected since this shaft sensorless system depends on the accuracy 
of the speed estimate, rω̂ . 
 
 



 
3.2.4 Experimental Results 

 The control algorithms were implemented on a Pentium PC.  The stator 
currents were measured through LEM transformers and evaluated using a PC Lab 
Card PL818 built into the PC.  A six-transistor IGBT module was used as the three-
phase inverter.  All the experiments presented were carried out with a DC supply 
voltage of Udc = 90 V and step rotor speed demands of ωd = 700 RPM and ωd = 125 
rad/s and a time constants of Tω = 0,5 s and Tω= 0,2 s.  Data logging of the 
experimental variables was carried out for a 1,75 s and 2 s time interval.  The SM 
was idle running during all the experiments. 
 In all the graphs presented, the stator current components as functions of time and their 
complex plot are shown in subplots (a) and (b) during the starting interval t∈(0-0,5 s).  The 
magnetic flux as a complex plot is shown in (c) and its components as functions of time are 
shown in (d) for the same starting time interval.  Plot (e) shows the speed estimate, , 
from the filtering observer together with the ideal speed response ωid .  Finally, subplot (f) 
shows the ideal rotor speed, ωid ,  together with real  rotor speed , ωr . 
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Fig. 3.2.4   Stator currents, linkage magnetic flux and speed response for first 
order linear dynamic mode without outer MRAC control loop 

 The experimental results obtained with the middle and inner control loops, 
excluding the MRAC loop, are shown in Fig. 3.2.4.  The errors between the ideal 
rotor speed computed according to transfer function (3.2.17) and the estimated and 
real rotor speeds are visible in subplots (e) and (f) and these errors may be seen to 
persist even in the steady-state. 
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Fig. 3.2.5   Stator currents, linkage magnetic flux and speed response for first 
order linear dynamic mode with outer MRAC control loop 

 
 
 Experimental results corresponding to those of Fig. 3.2.4, but including the 
MRAC outer loop, are shown in Fig. 3.2.5.  The significant reduction of the errors 
between the ideal speed and real rotor speed brought about by the MRAC outer 
loop, both during the acceleration of the drive and in the steady state, is evident by 
comparison of these two figures. 
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b) linear 1st  order dynamic 
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c) linear  2nd  order dynamic 

Fig.  3.2.6   Speed responses for three dynamic modes without (left graphs) and 
with (right graphs) outer MRAC control loop 

 
 

 Fig. 3.2.6 shows a comparison of results obtained with and without the 
MRAC outer loop for the constant acceleration mode and the linear second order 
mode as well as the linear first order mode.  For the two additional dynamic modes, 
the ideal real-time model of Fig. 3.2.3 must be replaced by that of the appropriate 
dynamic mode, the equations for which are given in Chapter 1.  The significant 
reduction of the aforementioned errors brought about by the MRAC outer control 
loop both during the acceleration interval and in the steady-state for all three 
dynamic modes is evident by comparison of the left and right sides of  
Fig. 3.2.6. 
 
 
 
3.2.5 Conclusions and Recommendations 

The preliminary experimental results (for an unloaded permanent magnet SM) 
confirm that the addition of an MRAC outer control loop to the forced dynamic 
shaft sensorless speed control system considerably improves its performance.  The 
MRAC loop also rendered the starting position less critical. 

Suggestions for future research work are: 

a)  an investigation of robustness with respect to motor and load parameter 
uncertainties for both MRAC and SMC outer control loops, including the 



addition of an unmodelled mechanical load with referred moment of inertia 
several times greater than that of the rotor. 

b)  a further set of experimental trials, including application of step load torques, 
together with an extensive investigation of the variation of the filtering 
observer performance with the pole locations. 

c)  an extensive examination of the starting characteristics of the control system, 
with respect to the lack of knowledge of the initial rotor position and further 
work, if necessary, to ensure reliable start-up from any initial rotor position. 
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