
2.3. SLIDING  MODE  BASED  OUTER  CONTROL  
LOOP  FOR  INDUCTION  MOTOR  DRIVES 

WITH  FORCED  DYNAMICS 
 
 
Abstract: Through the load torque estimation, the basic FDC based IM drive 
control system presented in the last two sections offers higher robustness with 
respect to parameter uncertainties and external load torques than conventional shaft 
sensorless speed control methods, due to the use of the load torque estimate in the 
control law, as explained in previous sections.  There is still, however, room for 
improvement when compared with the performance of some drives employing 
shaft sensors.  To achieve a closer approach to this performance, a scheme is 
presented using the sliding mode control principle.  It will be recalled that the basic 
FDC system has a cascade control structure consisting of an inner loop, which is a 
stator current control loop, and a shaft sensorless FDC based speed control loop, 
enabling a user specified dynamic performance to be obtained according to 
dynamic modes such as presented and described in Chapter 1.  This speed control 
loop will now be referred to as the middle loop, since the robustness enhancement 
will be produced by the addition of an outer sliding mode control loop.  Simulation 
and experimental results show good correspondence with the theoretical 
predictions and demonstrate the intended robustness improvements. 
 
 
2.3.1 Introduction 

The new FDC based IM drive control system already presented based on 
feedback linearisation [1], principles of vector control [2] and sliding mode control 
(SMC) [3] will be operated in the first order linear dynamic mode for this 
robustness enhancement investigation.  As stated previously, the system operates 
without shaft sensors, only the stator currents being measured and the applied 
stator voltages being determined by the computed switching algorithm of the 
inverter with a knowledge of the instantaneous DC link voltage.  The rotor 
magnetic flux norm dynamics is also chosen as linear and of first order, as 
described in section 2.1.2. 



Forced dynamic control is applicable in many non-linear multivariable 
automatic control applications and was originally developed for electrical drives 
employing IM [4] and experimentally verified in [5].  Various forced dynamics for  
IM drives, including constant torque demand, second order speed dynamics, and 
the possibility of directly controlling the drive acceleration, were introduced in [6] 
and verified by simulations.  The experimental results for all these three prescribed 
dynamics were presented in [7].  Such a control system is suitable for sensorless 
control of electric drives employing IM with moderate accuracy ( ).  The 
original basic sensorless IM drive control system with forced dynamics is shown in 
Fig. 2.3.1.  It contains a set of three observers for estimation of the rotor magnetic 
flux, the rotor angular speed and the load torque. 
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Fig. 2.3.1   Original control system of shaft sensorless speed controlled electric 
drive with IM and forced dynamic 

Since the control law itself, the magnetic flux observer, the rotor angular speed 
observer and load torque observer are all model-based, i.e., dependent on estimates 
of the motor parameters, then some sensitivity to the errors in these estimates is 
expected.  It means that the closed-loop performance of the whole control system is  
 



a affected by errors in the estimates.  To reduce this sensitivity the intention here is to 
close an outer control loop around the original close-loop system and to improve 
the robustness of the whole control system.  Model reference adaptive control 
(MRAC) and SMC based outer control loops were theoretically suggested in [8].  
The first experimental results for the MRAC outer loop were reported in [9].  The 
purpose of this chapter is the experimental verification of the SMC based outer 
control loop.  A schematic block diagram of the overall control system, including 
the SMC outer control loop, is shown in Fig. 2.3.2. 
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Fig. 2.3.2   Modified forced dynamic drive control system with the SMC outer 
loop 

Thus, the original FDC based speed controller becomes the middle loop 
controller of the new scheme. 
 
 
2.3.2 Control System 
 
2a) Model of Motor and Load 

The α, β frame based model of IM in matrix notation is as follows: 
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2b) The Middle Loop Controller 
 
 
2b1) The forced dynamic control law 

 On the basis that the inner loop controller maintains zero stator current errors, 
equation (2.3.3) is eliminated from the control problem.  The feedback linearisation 
principles [1] are used for the forced dynamic control law development.  The 
linearising functions, which force the system variables to obey specified linear 
closed-loop differential equations, are formulated for the rotor speed and the 
magnetic flux norm.  In this application, they are first order with time constants Tω 
for the rotor speed and TΨ for the demanded rotor flux norm.  These two variables 
therefore satisfy equations: 
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where  22
βα Ψ+Ψ=Ψ  . 

 The linearising function for  is then obtained by equating the right hand 
sides of equations (2.3.1) and (2.3.5a): 
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 The derivative of the rotor magnetic flux norm can be proven to be given by 
(2.3.7a) and equating the right hand sides of equations (2.3.5b) and (2.3.7a) yields 
(2.3.7b): 
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 The required control law is then obtained by combining equations (2.3.6) and 
(2.3.7b), but first, the state variables (x) are replaced by their estimates ( ) from 
the observers.  Also, the constant motor parameters (p) are replaced by their 
estimates 

x̂

( )p~ .  Furthermore, the fictitious control vector, I, is replaced by the 
demanded current vector, Id , which is the inner control loop reference input.  Thus, 
the forced dynamic control law is: 
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(2.3.8) 

 It should be noted that the constant external disturbance torque, ΓL , is treated 
as a state variable and estimated in the observer together with the other state 
variables.  The nominal closed-loop system is then governed by the transfer 
function: 
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 This feature a) automatically yields soft starting and b) renders the system 
ideally suited for inclusion as an adjustable linear element in an overall control 
system such as in motion control, where an outer linear position control loop would 
be added. 
 
 
 
2c) State Estimation 

 Detailed description of this part was already given as section 2.1.3 and in 
abbreviated form as section 2.2.3 and reader is referred for study of state estimation 
and observers design to the corresponding sections for this. 
 
 



2.3.3 Sliding Mode Outer Loop Controller 

Sliding mode based control law.  Sliding mode control [3] is a form of bang-bang 
control in which the plant state is forced towards and maintained within a close 
vicinity of a boundary determined by the control system designer.  If, for a single 
input, single output plant, the state variables are chosen as the controlled 
output and its derivatives up to an order equal to ‘r-1’, where ‘r’ is the plant 
rank, then if the state is maintained precisely on the boundary, the closed loop 
dynamics is determined by the boundary alone and is independent of the plant 
parameters and any external disturbances.  The state point then appears to 
slide in the boundary.  Hence the term sliding motion is used.  Since the 
boundary is an ‘r-1’ dimensional hyper-surface in an ‘r’ dimensional output 
derivative space, the order of the closed-loop system in the sliding mode is 
always ‘r-1’.  This fact is made use of in the outer loop controller. 

 Consider now the closed-loop system created by the inner and middle control 
loops.  This will have the nominal transfer function: 
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 Since the IM is inherently nonlinear, errors introduced by uncertainties of its 
parameter values will cause the linear dynamics of (2.3.10) to become nonlinear.  It 
may be shown that the sliding mode outer loop can compensate for this, but to 
illustrate its action more simply, these parametric uncertainties, external load 
torque and imperfect operation of the middle control loop due to the non-zero 
iteration interval will (roughly) be represented by a change of time constant and 
DC gain.  Then the combined inner and middle loop dynamics resulting from the 
aforementioned errors and disturbances may be represented by the transfer 
function: 
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where  1&0K d ≠>   and  .  ωω ≠> T&0T'

 In order to create a sliding mode control loop that does not reduce the system 



order (equal to the rank without transfer function zeros), which is required to yield 
the closed-loop system dynamics of (2.3.10), a pure integrator is introduced at the 
speed reference input of the middle control loop to increase its order by one before 
formation of the sliding mode outer loop.  Fig. 2.3.3 shows this, treated as a new 
plant with control variable, u ′ , and with the outer loop controller. 
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Fig. 2.3.3   Sliding mode based outer control loop 

 The output derivative, , may be obtained without differentiation by 
using the second of the filtering observer equations.  If the gain, K, is infinite, 
then the transfer characteristic between S and 

rω̂&

u ′  yields the bang-bang control 
law used in classical sliding mode control: 

 ( )Ssgnuu '
m=′ , (2.3.12) 

where: 

 . rrd ˆTˆS ω−ω−ω= ω
& (2.3.13) 

 The operation of such a control loop may be examined in the phase-plane, 
i.e, the graph of  against rω̂& rω̂ .  The control, u ′ , switches between  and 

, when 
mu+

mu− 0S = .  Setting this condition in (2.3.13) then yields the switching 

boundary.  This is shown in Fig. 2.3.4 together with a family of state 
trajectories commencing from different starting points (referred to as a phase 
portrait). 
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Fig. 2.3.4   Closed-loop phase portrait and switching boundary for sliding mode 

based outer control loop 

It is evident that over most of the boundary shown, the trajectories of the 
phase portrait are directed towards the boundary from both sides, meaning that 
once the boundary is reached, the trajectory is maintained close to it while the 
control, , rapidly switches (control chatter).  This is the condition for sliding 
motion and the controller described is the classical sliding mode controller.  Under 
these circumstances, the closed-loop system obeys the switching boundary 
equation shown in Fig. 2.3.4 and this corresponds to transfer function (2.3.11) with 
Kd=1 and 

u ′

ωω =′ TT , e. i.   
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 This means that without parameter uncertainties or external load torque, the outer 
loop controller makes no difference to the closed-loop dynamics.  It merely 
compensates for the effects of the parameter mismatches and load torque, thereby 
yielding the required robustness.  It is important to note, however, that with this shaft 
sensorless system, the control can only be as accurate as the speed estimate, . rω̂

 In the final control system design, the control chatter, which would interact in an 
undesirable way with the switching of the power electronics, is eliminated by 
reducing the slope, K, in Fig. 2.3.3 to a finite, but relatively large value.  Then it may 
be shown that as ∞→K , , and therefore the resulting performance is similar to 
the classical sliding mode controller, yielding similar robustness provided |u’|<u’m. 

0S →

 



 Since an angular acceleration estimate from filtering observer would be likely 
to contain substantial noise contamination, an opportunity to use an equivalent 
outer loop control algorithm avoiding this was taken (although this is available 
from the filtering observer).  With reference to Figure 2.3.3, the integrator 
effectively cancels the differentiator in the inner feedback loop.  The resulting 
block diagram is shown in Fig. 2.3.5 and this yields the SMC based control 
algorithm of equation (2.3.15). 

 ( )[ ]rrdSMd ˆTdtˆK ω−ω−ω=ω′ ∫ ω . (2.3.15) 
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Fig. 2.3.5   SMC based outer control loop implemented in experiments 

 
 
2.3.4 Simulation and Experimental Results  

 The following set of simulations and experiments demonstrate the 
performance of the control system by simultaneously applying i) a step angular 
velocity demand of ωd=100 rad/s, with time constant Tω=0,2 s, ii) a step rotor 
magnetic flux norm demand of ||Ψd||=5e-3 (Vs)2, with prescribed time constant 
TΨ=2,5 ms and with zero initial state variables throughout the system.  The 
simulations were carried out in the Matlab environment, the differential equations 
of the motor and observers being integrated using the explicit Euler method.  The 
simulations presented include the achieved sampling interval and the finite word 
length used in the experiments.  The parameters of the induction motor relevant to 
both the simulations and the experiments are listed in the Appendix. 

 For the experiments, the control algorithms were implemented on a PC 
equipped with a PC Lab card.  The stator currents were measured through ‘LEM’  



current transformers and evaluated using a ‘PC Lab Card PL812’.  A six-transistor 
Semikron IGBT module was used as the three-phase inverter.  All the experiments 
presented were carried out with a DC supply voltage of UDC=60 V and a step rotor 
speed demand of ωdem=100 rad/s and a time constant of Tω=0,2 s.  Data logging of 
the experimental variables was carried out for a 1,82 s time interval.  The eddy 
current brake served as a load during the experiments. 

In all the graphs presented, the stator current and rotor magnetic flux 
components as functions of time during the starting interval t∈(0-0,1) s are shown 
in subplots (a).  The estimates of the rotor speed from the pseudo-sliding mode 
observer are shown in subplots (b) as functions of time for the whole data logging 
interval.  Plots (c) show the load torque estimate, , from the filtering observer 

together with the rotor magnetic flux norm estimate ||Ψ||.  Finally, subplots (d) 
show the ideal rotor speed, ωid ,  together with real  rotor speed, ωr, and its estimate, 

, from filtering observer for the whole data logging interval.  The simulation and 
experimental results are plotted, respectively, in the left and right columns. 

LΓ̂

rω̂

 The simulation and experimental results obtained with the middle and inner 
control loops, excluding the SMC outer loop, are shown in Fig. 2.3.6.  The errors 
between the ideal rotor speed and the real and estimated rotor speeds can be clearly 
seen in subplots (d).  These errors, which are attributed to imperfections in the 
constant parameter estimates, and the finite gains of the observers imposed by the 
non-zero sampling interval, persist even in the steady-state. 

 The simulation and experimental results corresponding to those of Fig. 2.3.6, 
but including the SMC outer loop, are shown in Fig. 2.3.7.  The significant 
reduction of the aforementioned errors brought about by the SMC outer control 
loop, both during the acceleration of the drive and in the steady state, is evident by 
comparison of these two figures. 

 The experimental results confirm that the addition of a SMC based outer 
control loop to the forced dynamic shaft sensorless speed control of electric drives 
with induction motors considerably improves their performance.   The drive 
follows the ideal speed response much more closely during speed-up and also in 
the steady-state.  Even a substantial increase of the load torque was found not to 
deteriorate the drive performance significantly after the addition of the SMC outer 
loop and this improvement is even enhanced at higher rotor speeds. 
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Fig. 2.3.7   Speed response and corresponding state variables with sliding mode 

based outer control loop 
 



2.3.5 Conclusions and Recommendations 

 The preliminary experimental results confirm that the addition of a SMC based 
outer control loop to the forced dynamic shaft sensorless speed IM drive control 
system considerably improves its performance.  Suggestions for future research 
work are: 

 a detailed investigation of robustness with respect to motor and load parameter 
uncertainties and comparison of the effectiveness of both the MRAC and SMC 
outer control loops, 

 implementation of sliding mode based outer control loop for forced dynamic 
control of synchronous motor electric drives, 

 a further set of experimental trials for IM drives with higher power ratings 
together with an investigation of the variation of the filtering observer 
performance with the pole locations. 
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Appendix 
 

Three-phase induction motor AM 3~ 4AP80-2 MEZ SIEMENS parameters 
are as follows: 

Induction motor parameters Equivalent circuit parameters 

Rated power Pn=1.1  kW Mutual inductance Lm=0,474  H 
Rated speed ωn=297.93  rad/s Stator inductance Ls=0,482  H 
Terminal voltage Y/Δ  400/230  V Rotor inductance Lr=0,482  H 
Rated current Y/Δ  2.4/4.2  A Stator resistance Rs=7,15  Ω 
Moment of inertia J=0.035  kgm2  Rotor resistance Rr=6,05  Ω 
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