
2.2. FORCED DYNAMICS CONTROL OF 
INDUCTION  MOTOR  WITH  SELECTABLE  

FORCED  DYNAMICS 
 
 

Abstract:  This section describes a further development of the FDC control system 
for IM drives presented in section 2.1, in which the prescribed response to the 
reference speed demand can be chosen according to the constant acceleration, 
constant jerk, linear first order and linear second order dynamic modes, described 
in Chapter 1.  The control system, as developed to date, would be suited very well 
to applications requiring control to a moderate accuracy.  Experimental results 
obtained indicate good agreement with the theoretical predictions. 
 
 
2.2.1 Introduction 

 A new approach is taken to the control of induction motor based electric drives 
without the aid of shaft mounted speed or position sensors.  The result is a control law, 
which may be operated in any one of the operating modes described in Chapter 1. 
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Fig. 2.2.1   Overall control system block diagram 



The drive control system has a cascaded loop structure, as shown in  
Fig. 2.2.1, comprising an inner current control loop and an outer control loop 
realising the closed-loop dynamic behaviour of the selected operational mode.  The 
inner control loop forces the three-phase stator currents to follow their demands 
with negligible dynamic lag by setting the switching state of the three-phase 
inverter to oppose the errors between the demanded and measured stator currents at 
every iteration interval. 

Since the only measurement variables are the stator currents, a rotor speed 
estimator is employed which requires just these measurements together with the 
known stator voltages and estimated magnetic flux components from a magnetic 
flux estimator.  An observer whose real time model is based on the motor 
mechanical equation produces a load torque estimate required by the outer loop 
control law.  This requires the output of the speed estimator, the measured stator 
current components, the known stator voltage components and estimated magnetic 
flux components as inputs. 
 
 
2.2.2 The Control Law Development 

 In the interests of simplification, the control system is arranged in a 
hierarchical structure [1] in which the stator current demands are generated as 
primary control variables by a master control law, to be followed closely by a slave 
control law using the true control variables, i.e., the stator voltages. 
 
 
2a) Model of Induction Motor 

 The following non-linear differential equations formulated in the stator-
fixed  co-ordinate system describe the induction machine and serve for 
development of the control system: 
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where  is the rotor magnetic flux, [Ψ T = Ψ Ψα β ] i iα β⎡ ⎤= ⎣ ⎦
TI  is the stator current, 
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2b) The Master Control Law 

 The feedback linearisation principles [2] are used for the control law 
development.  The linearising functions which force the system variables to obey 
specified closed-loop differential equations are formulated for the rotor speed and 
the magnetic flux norm.  Firstly they are assumed linear, first order with time 
constant Tω for rotor speed and with time constant Tψ for demanded rotor flux 
norm.  These two variables therefore satisfy: 
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 The linearising function for  is obtained simply by equating the right hand 
sides of equations (2.2.3) and (2.2.5a), as follows: 
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 The rotor magnetic flux norm Ψ  is defined by equation (2.2.8) and its 

derivative &Ψ  can be shown to be given by equation (2.2.9): 
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 Again by equating the right hand sides of equations (2.2.5b) and (2.2.9) for the 
rotor flux norm derivative yields: 
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 The required control law is then obtained by combining equations (2.2.6) and 
(2.2.10).  But before this is done, the state variables ( )x  are replaced by their 
estimates,  from the observers.  Also, the constant motor parameters  are 
replaced by estimates 

( )$x ( )p
( )~p  as they cannot be known with infinite precision in 

practice.  Furthermore, the fictitious control vector, I, is replaced by the demanded 
current vector, Id , which will form the reference input to the slave control law to 
be described subsequently.  Thus: 
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(2.2.11) 
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 The control algorithm (2.2.11) contains the demanded output shaft angular 
acceleration  ad  (2.2.14).  The three following operational modes are realised by 
means of three differential equations for the angular acceleration,  ad.  The example of 
equation (2.2.14) yields the first order dynamics referred to below.  The second part 
(2.2.13) of the control law is the same for all three modes and is merely a statement of 
the prescribed rotor flux dynamics.  
 
 

2b1) The acceleration and dynamic torque for direct acceleration 
control 

In this case, the demanded acceleration is determined by a constant demanded 
angular velocity, ωd , and a demanded acceleration time, Ts=Tramp: 
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2b2) The acceleration and dynamic torque for linearly changing 

acceleration 

 For this operational mode, the value of the acceleration derivative ‘ε’ during 
speed-up is constant and the maximum acceleration is achieved in the middle of 
this interval.  For these values and for demanded acceleration and dynamic torque 
is therefore valid: 
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2b3) The acceleration and dynamic torque for first order dynamics 

This case was already described during master control law development.  Thus: 
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2b4) The acceleration and dynamic torque for second order dynamics 

In this case, the desired closed-loop differential equation for the ideal rotor speed 
is done by (2.2.20).  If the poles of this equation are purposely chosen as coincident 
and damping factor ξ=1, the settling time formula done by (2.2.21) may be used to 
determine ωnat  (where ‘n’ is order of the system) to fit chosen settling time: 
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If equation (2.2.20) is numerically integrated then &ω  is the demanded angular 
acceleration:  

 ( ) ( ) ( ) ( )[ ] hka2ˆka1ka dnatrdem
2
natdd ⋅ξω−ω−ωω+=+  (2.2.22) 

 
Profiles  of  speed  and  acceleration  for  individual  dynamics  were  shown  in 
Fig. 1.3.1. 
 
 
 
2.2.3 Estimation and Filtering 

 The Rotor Flux Estimator estimates the rotor magnetic flux vector 
components independently from the rotor angular velocity and is derived by first 
eliminating the term, ( )P ω

r
Ψ , between equations (2.2.1) and (2.2.2) and then 

substituting this in equation (2.2.2), yielding: 
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 This was implemented by simple explicit Euler numerical integration.  The 
integration, however, would be subject to long-term drift in practice and special 
measures should be taken to correct for this.  The correction for steady-state may 



be done without distortion of the magnitudes and phases of the flux estimates 
relative to the real fluxes [3].   
 The Sliding Mode Observer and Angular Velocity Extractor  are used 
to determine rotor speed.  First, a stator current vector pseudo sliding-mode 
observer is formulated for generation of an unfiltered estimate, ( ) *c~c~ r21 ΨP ∗ω of 
the term, ( )ΨP r21cc ω , of equation (2.2.1), by means of the equivalent  control  
method [4], from which will be extracted an unfiltered estimate, ω  of , with the 

aid of the flux estimate, 
r
∗ ω r

Ψ* , from the rotor flux estimator of the previous section. 

 The basic stator current vector sliding-mode observer is given by: 

 [ ]& ~ ~* *I I U= − + −c a
1 1

v , (2.2.24) 

where,  is an estimate of I as in a conventional observer.  The required estimate, 
however, is not I  but the continuous value of  v  which is generated by a pseudo-
sliding-mode observer as: 
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 Estimate of rotor speed, ω r
∗  is then extracted by subtracting the component 

equations of (2.2.26) to yield: 
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 The Filtering Observer presented previously caters for plant and 
measurement of noise, producing a filtered angular velocity estimate, .  Finally, 

since there is no direct means of measuring the external load torque, ΓL, is treated 
as a state variable in the real time model of the observer and is thereby estimated.  
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The filtering observer is as follows: 
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(2.2.28) 

 This is a conventional second order linear observer with a correction loop 
characteristic polynomial, which may be chosen via gains  and , to yield 
desired balance of filtering between the noise from measurements of currents  and 

 and the noise from velocity estimate (measurements) .  With respect of settling 
time formula (2.2.21), for n=2, 
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 A modified version of the observer based on pole placement at two different 
locations,  and 1ω− 2ω− , which shows higher stability, was used for design of 
observer gains  and .  Thus: ωk Γk
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2.2.4 Experimental Results 

 The parameters of the IM and ancillary devices used for experiments are listed 
in the Appendix.  IM was equipped by eddy-current brake.  The control law was 
implemented via a Pentium PC166, the stator currents being measured through 
LEM transformers and evaluated using a PC Lab Card PCL812 built direct into the 



PC.  An IGBT transistor module FUJI 2803 6MBI10L-060 was used as a three-
phase inverter, when the dc bus voltage was equal Udc=52.5 V. 

The experiments for all three prescribed dynamics were carried out for the same 
speed demand ωd = 200 rad/s with settling time Ts = 1 s.  Magnetic flux norm demand 
was kept constant and equal to ||Ψ||d = 0,0025 (Vs)2 with time constant TΨ = 3 ms. 
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a)  Complex stator voltages uα=f(uβ) b)  Complex stator currents iα=f(iβ) 
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c) Complex rotor fluxes Ψα=f(Ψβ) d) Steady-state  current and rotor flux v. time 
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e)  Estimated magnetic flux norm and 

torque v. time 
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speed v. t. 

Fig. 2.2.2   Experimental results for IM in constant torque acceleration mode 

 All presented figures contain (a) complex stator voltages, (b) complex 
stator currents, and (c) complex rotor magnetic flux.  Steady state α-



components of stator currents, (multiplied by 1e2), and rotor flux (multiplied by 
1e3) as a function of time are shown in (d) for time interval t = 1,78-1,79 s.  
Estimated rotor flux norm and load torque estimate are shown in (e) and finally 
subplot (f) shows ideal speed response, real rotor speed and its estimate from 
filtering observer. 

Experimental results for IM and direct acceleration control are shown in  
Fig. 2.2.2.  The range of rotor speeds achieved is ωd = 20-250 rad/s with prescribed 
time constants Tω = 0,05-1 s.  It can be clearly seen from Fig. 2.2.2 that ramp 
increase of speed was achieved with short delay. 
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-0 .06 -0.04 -0.02 0 0.02 0.04 0 .06
-0 .06

-0.04

-0.02

0

0.02

0.04

0 .06

[V s]

[V s]

 1 .7 6 1.765 1.77 1 .775 1.78 1 .785 1.79 1 .7 9
-6 0

-40

-20

0

20

40

6 0

 iα

 Ψ α

[s]

[A ],
[V s]

 
c) Complex rotor fluxes Ψα=f(Ψβ) d) Steady-state stator current & rotor flux v. t. 
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torque v. t. 

Fig. 2.2.3   Experimental results for IM with first order dynamics 
Experimental results for first order dynamics are shown in Fig. 2.2.3.  The 

achieved control range of shaft angular speed is ωd=15-250 rad/s with prescribed time 
constants Tω=0,1-1 s.  Again the demanded dynamics were achieved with short delays. 

Experimental results for second order dynamics are shown in Fig. 2.2.4.  The 
achieved control range is again ωdem=15-250 rad/s  with  prescribed  time constants 
Tω=0,05-1 s.  Again it can be clearly seen that demanded second order dynamic 
was achieved with small lag. 
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c) Complex rotor fluxes Ψα=f(Ψβ) d) Steady-state current and rotor flux v. t. 
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Fig. 2.2.4   Experimental results for IM with second order dynamics 

Experimental results for the electric drive with IM and second order dynamics 
with various damping factor are shown in Fig. 2.2.5.  It can be seen again that real 
rotor speed follows ideal speed response only with small lag for under-
damped, ξ=0,5, critically damped, ξ=1and over-damped, ξ=1,5 system. 
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a) ξ = 0.5 b) ξ = 1.0 c) ξ = 1.5 

Fig. 2.2.5   Experimental results for second order dynamics and various 
damping factor  

 Finally Fig.2.2.6 shows the experimental results for all four prescribed 
dynamics and idle running IM, when chosen speed reference was ωdem = 200 rad/s 
and settling time Ts = 0,2 s and speed response is shown together with ideal one.  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-50

0

50

100

150

200

250

[rads–1]

ωrωid

[s]

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-50

0

50

100

150

200

250

[rads–1]

ωr

ωid

[s]

 
a) constant acceleration b) linear acceleration 
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c) first order dynamic d) second order dynamic 

Fig. 2.2.6   Experimental results for IM with all individual dynamics 
2.2.5 Conclusions 

The investigations of the proposed new control method for electric drives 
employing induction motors with forced dynamics show a good agreement with 
the theoretical predictions.  The significant, though not very large, departure 
from the ideal performance is due mainly to the non-zero iteration interval, h, 
and time delay in the load torque estimation as well as due to errors in the motor 
and load parameter estimation. 

While direct torque control can be suitable for majority of industrial 
applications, second order dynamic can be very attractive for electric drive 
designers of cranes and lifts.  The control system, as developed to date, would 
be suitable for applications requiring sensorless speed control of induction motor to 
moderate accuracy ( %5≈ ). 
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Appendix 
 

Three-phase e induction motor 4AP-64 P parameters are as follows: 

Parameters of induction motor Equivalent circuit parameters 

Rated power Pn=180  W Mutual inductance Lm=1,083  H 
Rated speed nn=1370  ot/min Stator inductance Ls=1,17  H 
Rated current In=1,15  A  Rotor inductance Lr=1,17  H 
Terminal voltage Un=220  V Stator resistance Rs=46,23  Ω 
Moment of inertia J=6,5e-4 kgm2  Rotor resistance Rr=15,39  Ω 

Parameters of IGBT FUJI 6MBI-060 Current sensors LEM    

Rated voltage 600 V LTA 50P/SPI 
Rated current 6x10 A  
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