
2. SHAFT SENSORLESS FORCED DYNAMICS 
CONTROL OF INDUCTION MOTOR DRIVES 

 

2.1. Sensorless Induction Motor Drive Control System 
with Prescribed Closed-Loop Rotor Magnetic Flux 

and Speed Dynamics 
 
 

Abstract:  This section briefly describes the theory and presents experimental 
results of the new method for control of electric drives with induction motors 
presented in section 2.1.  Control of the rotor magnetic flux norm and angular 
velocity is achieved without measurements from sensors mounted on the output 
shaft.  The dynamic responses of both the controlled variables are of the first order 
with time constants chosen by the drive user to suit the particular application.  The 
experimental results presented show good agreement with theoretical conclusions 
and simulation results obtained previously. 
 
 
2.1.1 Introduction 

In contrast with conventional approaches to electric drives with induction 
motors, the combined induction motor and load are viewed as a multivariable 
nonlinear plant, the control variables, measurement variables and controlled 
variables being, respectively, the individual phase voltages, the stator currents, and 
the rotor magnetic flux and angular speed. 

The linearising function [1], the block control principle [2] and the motion 
separation principle [3], are combined to form a new non-linear multivariable 
drive control algorithm which achieves ideal de-coupling of the flux and speed 
control channels, assuming perfect estimates of the motor parameters. 

A very important feature of the new control system is that it contains a closed-
loop oscillatory mode, which automatically generates stator currents of variable 
magnitude and frequency such that the prescribed dynamic responses of the rotor 
speed and flux magnitude to their corresponding demanded values is achieved. 



The other important feature, is that the system presented achieves speed control 
of moderate accuracy without the need for a velocity sensor on the output shaft of the 
motor. Observers produce estimates of the rotor magnetic flux components, rotor 
speed and load torque which are the variables required as inputs to the control law.  
This represents a significant innovation in the field of electric drives and  
for the first time, the rotor speed and rotor magnetic flux magnitude are 
independently controlled with closed-loop time constants chosen by the control 
system designer. 

The system described in this chapter is a form of feedback linearisation but it 
should be noted that, in general, it is not restricted to linear closed-loop dynamics.  
It would be possible to form a control algorithm to make the closed-loop system 
obey any first order differential equation relating the rotor speed to its demand.  
For example, as required in some applications, the drive could be made to increase 
or decrease speed at prescribed constant accelerations and decelerations to reach 
new constant reference speeds.  For this reason, the general title, forced dynamic 
control, is used to describe the general method.  The reason for a linear choice of 
dynamics, however, is that a control system intended to incorporate the drive could 
be designed with the aid of linear control theory. 

 
 
 
2.1.2 Control System Development 
 
 
2a) Model of Induction Motor 

One of the motivations for the new approach was to eliminate the on-line 
computation of time varying transformation matrices, as required in conventional 
vector control methods, and for this reason, the basis for the control system 
development is the following induction motor model, formulated in the stator-fixed 
α, β co-ordinate system: 
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where  ΨΤ= [Ψα  Ψβ] is the rotor magnetic flux,  ΙΤ= [ια  ιβ] is the stator current, 
UT= [uα  uβ] is the stator voltage, Γel is the torque developed by the motor, ωr is the 
mechanical rotor speed, and individual constants are given by:  c1=Lr/(LsLr-L2

m), 
c2=Lm/Lr,  c3=Rr/Lr=1/Tr,  c4=Lm/Tr,  c5=1,5.p.Lm/Lr  and  a1=Rs+(L2

m/L2
r)Rr, where 

Ls , Lr  and Lm  are, respectively, the stator and rotor inductance and their mutual 
inductance.  Rs  and Rr  are, respectively, the stator and rotor resistance and  p  is the number 
of stator pole pairs.  Also, 
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Since all currents referred to are stator currents and all the magnetic fluxes are 
rotor fluxes, the corresponding subscripts, r and s, in the following equations will 
be omitted  

 



2b) The Control Law Derivation 
 
 
2b1) Approach 

The control law synthesis is carried out in two stages.  First, the current 
vector, I, is regarded as a fictitious control vector.  The master control law is then 
formed for controlling the rotor speed and maintaining a substantially constant 
rotor magnetic flux magnitude independently.  The fictitious control variables are 
made non-linear functions of the state variables and the reference inputs such that 
the differential equations relating the controlled variables to the corresponding 
reference inputs are linear with the desired dynamic characteristics.  These 
functions are referred to as linearising functions.  Second, a robust (either high gain 
or sliding mode) control law, denoted the slave control law, is formed, with the 
stator voltage vector, U, as the control vector to ensure that the true current vector, 
I, closely follows the demanded current vector, Id.  This is implemented using a 
current fed inverter. 

 
 
2b2) Rotor speed linearising function 

The desired closed-loop linear differential equation is: 
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where  is the demanded angular velocity and Tω is the closed-loop time 

constant.  The linearising function is chosen to force the non-linear differential 
equation (2.1.1) to have the same response as the linear differential equation 
(2.1.5).  This is achieved by equating the right hand sides of these equations, 
yielding the following linearising function: 
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2b3) Rotor magnetic flux linearising function 

 A convenient norm for the rotor flux vector is the square of its magnitude, 
ΨΨ=Ψ T .  First equation (2.1.2) is expressed in terms of Ψ  using equation 

(2.1.4) for P(ωr).  Thus: 
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The linearising function is formulated to yield a first order linear dynamic response 
of ( )tΨ  to a demand, dΨ , with a time constant, TΨ .  Thus: 
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Equating the right hand sides of equations (2.1.8) and (2.1.9) then yields the 
following linearising function: 
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2b4) The master control law 

The linearising functions (2.1.6) and (2.1.10) are now solved as two simultaneous 
equations in the two components of I, yielding the required control law.  Thus: 
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where the ^ denotes estimated state variables and the ~ denotes assumed 
constant parameters.  Also, the fictitious control vector, I, is replaced by the 
demanded current vector, , on the basis that the slave control law ensures 
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Fig. 2.1.1   Hierarchical structure of the control system 

It should be noted that the constant external disturbance torque, , is treated 
as a state variable and estimated in the observer together with the other state 
variables. 

LΓ̂

 
 
 
2c) The slave control law 

The sub-plant to be controlled here is defined by equation (2.1.3).  Two 
options can be considered. 

First for simulation investigation only a high gain proportional control 
law with saturation limits equal to the power supply voltages, , is 
formed.  Thus: 
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The second option, which is for practical implementation, is the bang-bang 
control law: 
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operating in the sliding mode, ideally maintaining I=Id with a finite but high 
switching frequency, limited by h, maintaining .  Since the controlled 

dynamics of equation (2.1.3) is only of first order, the closed-loop system has zero 
order dynamics between  and I meaning that in theory, as h → 0, I follows  

precisely with zero dynamic lag. 
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2d) Automatic Start Algorithm 

 The primary control law cannot initiate the rotor flux build-up unaided with 
zero initial state variables.  This is evident in equation (2.1.11), which has a 
singularity at 0=Ψ̂ .  This problem is overcome here by overriding the master 

control law with a simple algorithm (a slightly modified version of that previously 
published), which applies the maximum voltage under prescribed demanded values 
of currents until the estimated rotor magnetic flux norm has exceeded a designated 
minimum value, as follows: 
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2.1.3 State Estimation and Filtering 
 
 The rotor magnetic flux, rotor speed and load torque which are the inputs for 
the master control algorithm are produced by the following set of three observers.  
The first is the rotor magnetic flux estimator.  The second is a stator current vector 
pseudo sliding-mode observer formulated for generation of an unfiltered estimate 
of the rotor speed.  The third observer provides filtered rotor speed and load torque 
estimates, a direct measurement of load torque being assumed to be unavailable. 
 
 
3a) The Rotor Magnetic Flux Estimator 

 For induction motors a means of estimating the rotor magnetic flux 
components may be devised by eliminating the, rotor speed, ωr, between equations 
(2.1.2) and (2.1.3), yielding equation (2.1.15a): 
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 With zero initial conditions, all the quantities on the right hand side of 
equation (2.1.15b) are known, but the pure integration would be subject to drift in 

practice.  This problem is overcome here by noting that .  

Accordingly, if 
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Ψ  exceeds (1+ d) Ψλ  where 10 <λ< , the drift is prevented by 

replacing the integral of equation (16) by a first order filter with a time constant, 
 such that T

q
T

q r>> 1 ω min , where ω  is the lowest angular velocity envisaged 

for the particular application.  This is realised by numerical integration of the 
following differential equation, replacing the true constant parameters by their 
estimates: 
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Equation (2.1.17), completes the algorithm as follows: 
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3b) The Pseudo Sliding Mode Observer and Angular Velocity Extractor 

 A stator current pseudo-sliding-mode observer is formulated for generation 
of an unfiltered estimate, , of the term, ( )Ψ̂ˆc~c~ ωP r21 ( )Ψr21cc ωP

ω

, of equation 
(2.1.3), using the equivalent control method [3].  The observer is therefore formed as 
a stator current real time model but purposely omitting terms containing .   r

 



Thus: 
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where vT =[vα  vβ] are the model corrections,  and  , are estimates of iα and iβ, 
as in conventional observers.  The useful observer outputs here, however, are the 
continuous equivalent values , (i.e., the short term mean values) [3], of the 

rapidly switching v.  But equation (2.1.19) cannot directly generate the equivalent 
values.  Instead, a pseudo-sliding-mode observer may be formed by replacing the 
signum functions by high gains (2.1.20): 
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where  so that v is continuous and closely approaches  

for sufficiently high gains, limited only by the non-zero iteration interval, h, of the 
digital implementation (
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numerical integration).  The resulting approximation to  is denoted .  

Assuming that observer (2.1.19) operates in the ideal sliding mode,  if 
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Replacing Ψ  and  in equation (2.1.21), by their estimates  and   yields: ω
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The following formula for the desired angular velocity estimate, , is then 

derived from the components, v*
eq of equation (2.1.22b): 
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 A block diagram of the pseudo-sliding mode observer is shown in Fig. 2.1.2a. 
 
3c) Observer for Load Torque Estimation and Rotor Speed 

Estimate Filtering 

 The load torque estimate required by the master control law is provided here 
by a standard observer having a similar structure to a Kalman filter, a direct 
measurement of this being assumed to be unavailable.  The real time model of this 
observer is based on motor torque equation (2.1.1).  The load torque is treated as a 
state variable whose differential equation augments the real time model [3].  In this 
case, the load torque is assumed constant in the formulation of the real time model 
and so its state differential equation is simply .  The observer correction loop 
is actuated by the error between the rotor speed estimate, ω*

r , from the angular 
velocity extractor and the estimate, , from the real time model.  Since  is a 

filtered version of ω*
r  it is used directly in the master control law instead of ω*

r.  
The continuous time version of this observer is therefore: 
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(2.1.24) 

 Block diagram of filtering observer is shown in Fig. 2.1.2b. 



 The observer poles are both placed at fT1s −=  so that the filtering time 
constant, , is a single design parameter for the gains, and  as it is shown in 

(2.1.25a), where the right hand side of equation is the characteristic equation of the 
filtering observer characteristic polynomial: 
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 Although the load torque is assumed constant in the formulation of the real 
time model of the observer, the estimate, , will follow a time varying load 
torque and will do so more faithfully as  is reduced, but at the expense of 
sensitivity to any noise contaminating the rotor speed estimate, .  It may be 

shown that any driven mechanical load can be represented by a time varying load 
torque component.  It follows that since the control system is designed to be 
insensitive to a time varying load torque, it will also be insensitive to the dynamics 
of the driven mechanical load. The control system therefore offers robustness. 
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a) Pseudo-sliding mode observer b) Filtering observer 

Fig. 2.1.2   Block diagrams of pseudo-sliding mode observer  
and filtering observer 



 The system can be completed with the rotor magnetic flux filtering observer 
which is based on equation (2.1.2), the inputs being the filtered angular velocity 
estimate, , together with I and Ψ : $ω

r
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The observer may be made time invariant with a filtering time constant of  by 
the following gains: 
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This yields the following dynamics equation for the estimation error, : 

 . (2.1.28) 

The above observers must be converted to the discrete time form for digital 
implementation [4]. 

 Finally, Fig. 2.1.3 shows the complete control system. 

 

Fig. 2.1.3   Overall control system block diagram 



2.1.4 Alternative Load Torque Compensating Schemes 

 Results with the filtering observer (2.1.24), Fig. 2.1.2b were only available 
as simulations during the initial experimental period.  The first experimental results 
were produced with the aid of a PID controller in which the integrator output 
effectively performed the combined function of load torque estimation and 
correction, as shown in Fig. 2.1.4.  Without the filtering observer then, ω*

r was fed 
to control law (2.1.11) instead of the filtered version, $ωr . 
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Fig. 2.1.4   Load torque compensation by outer PID control loop 

 This was successful.  A more elegant solution than the somewhat heuristic 
PID control loop, however, was pursued later, as follows.  It was observed that 
with  in control law (2.1.11), the correct exponential form of speed step 

response was obtained but with a steady state error.  Under these circumstances, the 
response to a step speed reference input appeared to correspond to a system with 
transfer function: 
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where 0 < k < 1.  This observation lead to a system based on a special form of sliding 
mode control embodying a control smoothing integrator [8].  Conventional sliding 
mode control employs bang-bang control action with output derivative feedback to 
achieve a closed-loop dynamic performance virtually independent of the plant 
parameters, the number of output derivatives being equal to the ‘r-1’, where r is the 
plant rank. The control chatter is eliminated by inserting an integrator between the 
bang-bang control element and the control input and treating the input to the 
integrator as a new control variable, one more derivative being added to the  
 



output feedback.  In this case, the closed-loop system (2.1.29) is treated as a new 
plant to be controlled.  This, together with the additional integrator is of rank 2 and 
so derivative  is required (generated by software differentiation) as well as ω  
in the output feedback.  Since, in this case, there is no need for the bang-bang 
control action, it is replaced by a high gain, K, and this is well known to produce a 
similar dynamic performance.  The result is an outer loop closed around the 
existing system, as shown in Fig. 2.1.5. 
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Fig. 2.1.5   Load torque compensation by high gain outer control loop 

 The speed demand, ωd, is then applied to the high gain outer loop controller 
and the output of this is the speed demand, , of the existing closed loop system, 

as shown.  In theory, the system of Fig. 2.1.5 is stable for any gain, K.  Hence, if 
the gain, K, is increased sufficiently, then the error, e, is driven to zero.  In this 
case, it may easily be shown that the closed-loop system obeys transfer function 
(2.1.29) with k=1, as desired. 

′ωd

 
 
2.1.5 Experimental Results 

 The experimental equipment for evaluation of the new control strategy for 
electric drives with induction motors includes an induction motor with nominal power, 
Pn= 120 W, equipped with an eddy-current brake for applying an external load torque.   
A complete set of the motor parameters may be found in the Appendix.  An inverter 
bridge with IGBT transistors (parameters in appendix) and an IR 2130 driver was 
employed.  A Pentium P130 computer carried the control algorithms under evaluation.  
This was equipped with a PCL812/PG PC-lab card for sensing the currents of two-
phases via LEM current sensors, the third phase current being computed. 



-50 0 50
-40

-30

-20

-10

0

10

20

30

40  [V]

 [V]
 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5
 [A]

[A]
 

a)  complex voltage b)  complex current 

-0.1 -0.05 0 0.05 0.1-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
[Vs]

[Vs]
 0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

[(Vs)2]

  [s]

Ψ Ψ Ψ* = +α β
2 2

 
c)  complex mg. flux d)  rotor flux norm 

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

[Nm]

[s]
 0 0.5 1 1.5 2

-40

-20

0

20

40

60

80

100

120

ωob [s]

] ωr[rad/s]

 
e)  torque observed f)  rotor speeds 

Fig. 2.1.6   Experimental results for idle running induction motor 

The sampling frequency was limited to 7 kHz, mainly due to the relatively 
slow A/D converters of the PC-lab card.  In fact, the conversion of the current 
measurements into digital form occupied 80% of the computational cycle.  For 
further experiments, the faster PCL818 PC-Lab card is recommended together with 
a dedicated DSP or microprocessor. 



Experimental results for the idle running motor with the PID load torque 
estimator/corrector of Fig. 2.1.4 are shown in Fig. 2.1.6.  The speed and flux 
magnitude reference inputs, are, respectively, ωd = 100 rad/s, and ||Ψ||d = 5e-3 (Vs)2 
with prescribed time constants of Tω = 0,1 s, for rotor speed and TΨ = 5e-3 s for the 
rotor magnetic flux norm, to ensure fast excitation of the motor. 
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Fig. 2.1.7   Experimental results for loaded induction motor 
 



All the experiments were carried out with a dc supply of Udc=60 V, 
corresponding to 40 V magnitude of phase voltage.  This was the main reason for 
reducing the maximum torque well below the specified nominal torque.  The rotor 
speed was monitored by means of a tacho-dynamo for comparison with the ideal 
response yielded by equation (2.1.5), which was computed in real time during the 
experiments.  These variables are plotted on the speed response graph together with 
the speed estimate from the filtering observer. 

Experimental results for the loaded induction motor are shown in Fig. 2.1.7, 
again with the PID load torque estimator/corrector of Fig. 2.1.4.  The rotor 
magnetic flux reference input in this case was increased to ||Ψ||d = 1e-2 (Vs)2 and 
the corresponding time constant was TΨ = 5e-3 s.  The rotor speed parameters were 
ωd = 100 rad/s and the time constant was increased to Tω = 0,3 s.  It was found 
necessary to make small adjustments to the parameters of the PID load torque 
estimator/corrector to obtain good results. 

The real rotor speed response does not show a significant deviation from the 
ideal speed response as evident in Fig. 2.1.7 (f).  This indicates that the PID load 
torque estimator is a strong candidate for later consideration and the experimental 
drive performance should be carefully examined against that which will be 
obtained with the originally intended filtering observer in the future.  

Step changes in speed demand, including changes of direction, also with the 
PID load torque estimator, are shown in Fig. 2.1.8.  Despite some problems with 
load torque computation when the angular speed approached zero value, there is 
not a remarkable difference between ideal angular speed response and the real rotor 
speed response. 

  
a)  speed changes b)  speed reverse 

Fig. 2.1.8   Responses to step changes in rotor speed reference inputs 



Experimental results with the high gain outer control loop of Fig. 2.1.5 are 
presented in Fig. 2.1.9.  It should be noted that similar results to those of Fig. 2.1.6 
and Fig. 2.1.7 were obtained under the same test conditions.  It was then decided to 
test the system robustness by applying a step change of load torque at about 0,5 s.   
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Fig. 2.1.9   Experimental results for step change of load  
of induction machine 

 



As seen in Fig. 2.1.9 (e), the transient load torque is compensated by a higher value 
of the demanded speed, ωd, and the real speed response keeps fairly close to the 
ideal speed response, as shown in Fig. 2.1.9 (f). 

These experimental results show that moderate speed control accuracy may be 
achieved with the scheme of Fig. 2.1.4 as well as that of Fig. 2.1.5.  It is important 
to emphasise that the PID solution required considerable tuning time, in contrast to 
the high gain solution, which entailed only increasing K within practical limits. 
 
 
 
2.1.6   Conclusions and Recommendations for Further Work 

The experimental results show good agreement with the theoretical ones 
previously described in [5] and [6]. 

The implementation of the system with the original filtering observer for 
speed and load torque estimation should be carried out and the results carefully 
compared with those obtained with the alternative schemes. 

Further improvement of the induction motor control could be investigated 
with a modified algorithm for control of the rotor speed and direct control of the 
angle between the rotor magnetic flux and stator current vectors, as it was 
suggested for the synchronous motor in [7]. 

The general approach presented here should be pursued experimentally for 
synchronous motor drives.  In fact, preliminary experimental results have already 
been obtained and these are encouraging. 

Implementation of more sophisticated inverter modulation techniques, such as 
space vector control, should also be carried out, since this can bring about 
significant improvements of harmonic content of the inverter output currents, 
which will improve the performance of the observers responsible for producing the 
flux and speed estimates on which the control law depends. 
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Appendix 
 
 The three-phase induction motor PARVALUX parameters are as follows: 

Induction motor parameters Equivalent circuit parameters 

Rated power Pn=120  W Mutual inductance Lm=21  mH 
Rated speed nn=1410  rpm Stator inductance Ls=24,6  mH 
Rated current Y/Δ  In=1,2/1,9 A Rotor inductance Lr=24,6  mH 
Terminal voltage Y/Δ  Un=87/50 V Stator resistance Rs=11,16  Ω 
Moment of inertia J=1,7e-4  kgm2  Rotor resistance Rr=12,53  Ω 

Parameters of IGBT FUJI 6MBI-060 Current sensors LEM    

Rated voltage 600 V LTA 50P/SPI 
Rated current 6x10 A  
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