
 

1. INTRODUCTION TO SHAFT SENSORLESS 
FORCED DYNAMICS CONTROL OF AC 

ELECTRICAL DRIVES 
 
1.1. Basic Principles 
 
 
1.1.1 Forced dynamic modes 

 The new forced dynamic control law for electric drives employing AC motors 
enables various prescribed dynamic responses to speed demands to be obtained, 
which will be referred to as dynamic modes.  Those considered here are: 

a) the direct acceleration control mode, in which the rotor acceleration follows a 
time-varying acceleration demand with virtually zero dynamic lag,  

b) the constant acceleration mode, in which the rotor speed is automatically 
controlled to respond to piecewise constant reference speed changes with a 
prescribed constant acceleration (or deceleration), 

c) the constant jerk (rate of change of acceleration) mode, in which the rotor 
acceleration during speed-up is controlled to linearly increase up to half of the 
demanded speed and after this to linearly decrease to zero, at which point the 
demanded speed is reached (remark: S curve). 

d) the linear first order mode, in which the rotor speed follows a time varying 
reference speed with first order linear dynamics and a prescribed time constant, 
and 

e) the linear second order mode in which the rotor speed follows a time varying 
reference speed with second order linear dynamics having  prescribed settling 
time and damping ratio. 

 Mode (a) is similar (in its end result but not in its means of achievement) to 
the now well-established direct torque control method.  Here, the rotor angular 
acceleration is controlled to follow a demanded angular acceleration with 
negligible dynamic lag.  This mode may be converted to direct torque control by 
simply dividing the demanded torque by the rotor moment of inertia to obtain the 
corresponding demanded angular acceleration.  It is unnecessary to include the 



 

equivalent moment of inertia of the driven mechanical load or other dynamic 
effects such as friction, since the entire load dynamics may be represented as a 
time-varying load torque and this is estimated and compensated for in all the 
control schemes presented. 
 Modes (b), (c), (d) and (e) are all special cases of mode (a) in which the rotor 
acceleration is controlled to achieve the desired dynamics.  This is true in the sense 
that the instantaneous demanded rotor shaft angular acceleration is automatically 
varied using the desired differential equation relating the angular acceleration to 
the achieved and demanded angular velocities. 

 It should be noted that the FDC method is a form of feedback linearisation for 
dynamic modes (d) and (e), since the desired closed-loop system obeys a linear 
differential equation.  For dynamic modes, such as (b) and (c), however, the 
desired closed-loop system obeys a nonlinear differential equation, and so the more 
term, forced dynamic control, is used to describe the general method.  

 Mode (b) is a form of soft start control, which is generalised to yield speed 
changes between any two demanded values at a constant acceleration or 
deceleration.  
 Modes (c) and (e) are intended for applications requiring responses to changes 
of speed that avoid shaking the controlled mechanism.  Examples are:  
a) a  ‘drive by wire’ electric locomotive in which a sudden change of speed 

demand from the driver would limit the jerk (i.e., rate of change of 
acceleration) and  

b) a controlled crane in which the rate of build-up of the force in a load being 
lifted would be limited, in the interests of care in handling the payload. 

 Mode (d) is particularly useful for applications in which one or more drives 
are elements of an overall control system, such as variable speed pumps for liquid 
level control in industrial processes involving inter-connected tanks.  The 
prescribed drive speed control time constants then become adjustable parameters in 
the design of the overall control system. 

 In all these modes, the current and magnetic flux vectors producing the torque 
can be maintained mutually perpendicular as in conventional vector control. 

 



 

1.1.2 Basic dynamic model of electrical drive 

 The starting point in creating a drive control system is the differential equation 
modelling the motor and its driven load.  In its basic form, which is applicable to 
all types of electric motor, this equation relates the electrical torque, Γel(t) 
developed by the motor and the load torque, ΓL(t), acting on the rotor inertia, to the 
rotor angular acceleration, rω& : 

 ( ) ( )[ ]tt
J
1

Lel
r

r Γ−Γ=ω& . (1.1.1) 

 For a.c. motors, Γel(t) is a function of the two current components and two 
magnetic flux components, in either the stator-fixed α, β frame or the rotor-fixed 
d, q frame, and the particular cases of the induction motor (IM) and permanent 
magnet synchronous motor (PMSM) will be dealt with in subsequent sections of 
the book.  It will be shown later that it is possible to control the stator voltages so 
that the real electrical torque follows a demanded value with negligible errors and 
therefore, for the simple introductory explanation given in this section, Γel(t) will 
be regarded as the control variable.  Fig. 1.1.1 shows a general block diagram of 
the motor and its mechanical load. 
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Fig. 1.1.1   Block diagram of motor and its load, together with torque definitions 

 



 

 This diagram is most important in appreciating why the control systems 
developed in the research programme exhibit the desirable property of robustness, 
i.e., their ability to yield the prescribed dynamic speed responses to their reference 
inputs despite uncertainties in knowledge of the driven mechanical load and the 
presence of external load torques.  The model will now be explained. 

 With reference to Fig. 1.2.1, the load torque, ΓL, can be regarded as composed 
of two components, the external load torque, ΓLe, and the dynamic load torque, 
ΓLd.  Most importantly, the driven mechanical load is represented in the inverse 
dynamic form in the feedback path of the model, so that ΓLd  is the torque 
component that must be applied to produce a given motion.  For example, if a 
balanced load mass with moment of inertia, JL , is bolted to the rotor of the electric 
motor, then rLLd J ω=Γ & .  This will be defined as the inverse dynamic equation 
since it yields ΓLd  given the rotor angular acceleration, rω& .  Conversely, the 

dynamic equation of the load mass taken in isolation from the motor is  
LLdr J/Γ=ω& , since it yields the angular acceleration, given the applied torque.  

The inertial torque is important too.  This is the torque applied to the rotor inertia, 
which yields a given angular acceleration.  This is sometimes called the dynamic 
torque but the alternative term, inertial torque, ΓI , is used here to avoid confusion 
with the dynamic load torque previously defined.  To illustrate the validity of the 
model, it is evident from Fig. 1.1.1, that: 

 LdLeelI Γ−Γ−Γ=Γ , (1.1.2) 

but rLLd J ω=Γ &   and rrI J ω=Γ & .   Hence: 

 rLLeelrr JJ ω−Γ−Γ=ω && , (1.1.3) 

from which 

 ( ) ( )LrLeelr JJ/ +Γ−Γ=ω& . (1.1.4) 

This is the expected result. 



 

 
1.1.3 General equation for forced dynamic control of 

electrical drive 

 All that is required is to write down a differential equation for the desired closed-
loop dynamic behaviour, which relates the rotor angular acceleration, to the rotor 
angular velocity and the demanded rotor angular velocity, ωd .  This will usually be of 
the same order as the motor mechanical equation (1.1.1), i.e., first order.  In general, 
this may be written: 

 ( )drdr ,a ωω=ω& , (1.1.5) 

where the choice of the demanded rotor acceleration function, ad(ωr , ωd), determines the 
dynamic mode referred to in section 1.1.1.  The motor, as modelled by (1.1.1) is then forced 
to follow the desired dynamics of (1.1.5) simply by equating the right hand sides: 
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(1.1.6) 

 This will be called the forced dynamic equation.  It should be noted that in 
cases where ad(ωr , ωd), is a linear function of its arguments, the closed-loop system 
is linear and equation (1.1.6) will be called the linearising equation.  The electrical 
torque required from the motor to achieve the required dynamic mode is then 
obtained by making  Γel  the subject of equation (1.1.6), yielding 

( )drdrLel ,aJ ωω+Γ=Γ .  In a practical control system, a fairly accurate estimate, 

rJ~ , of Jr  must be used.  Fortunately, as shown in the further sections, it is possible 

to form an estimate, LΓ̂   of ΓL  using an observer, and this must be used.  As 

mentioned previously, Γel  is regarded as the control variable, because the motor 
stator voltages can be controlled to follow a demanded electrical torque, Γel, with 
negligible errors.  The practicable form of the forced dynamic control law is then: 

 ( )drdrLdel ,aJˆ ωω⋅+Γ=Γ , (1.1.7) 

It is important to see that the component, LΓ̂ , of the motor electrical torque in 

(1.1.7) effectively counteracts the entire load torque, ΓL , in Fig. 1.1.1, if it is  
a good estimate and thereby renders the drive control system almost independent of 
the dynamics of the driven load and the external load torque, by counteracting the 



 

dynamic load torque, ΓLd, as well as ΓLe .  The successful operation of the control 
system therefore depends critically on the load torque observer. 
 It is possible to force the drive to operate in a dynamic mode of greater than 
first order and this may be done by means of a digitally integrated model of the 
desired dynamics.  The continuous time form of this model may be written as: 
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where  ωm  is the model rotor angular velocity and n,..,,q,
dt

d
q

m
q

)q(
m 21=

ω
=ω  .  

Then the demanded acceleration used in equation (1.1.7) is: 

 mda ω= & . (1.1.9) 

In addition to this, however, a loop must be closed using the estimated rotor 
angular velocity from the observer, which will be denoted by rω̂ .  This will be 
achieved by using rω̂  to drive the model, so the required continuous-time version 

of the model becomes: 
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Finally, this dynamic model must be numerically integrated on the digital processor 
controlling the drive, and this may be done in a straightforward manner using the 
control canonical state space form and explicit Euler integration.  The continuous-
time state space model has state variables, m1x ω= , m2x ω= & … ( )1n

mnx −ω=  and is 

as follows: 
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(1.1.10b) 



 

The corresponding discrete time model for digital implementation is then: 

    

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ]

( )1kxa

h,kˆ,kx,kx,...,kx,kxfkx1kx
hkxkx1kx

hkxkx1kx
hkxkx1kx

2d

dr232n1nnn

n1n1n

322

211

+=

⋅ωω+=+

⋅+=+

⋅+=+

⋅+=+

−−

−−

M
 

 
(1.1.11) 

where h is the step-length of the numerical integration.  One of the second order 
linear dynamic modes applied in this book uses this method. 

 It is possible in some cases to operate higher order dynamic modes without 
such a model, if the derivatives of (1.1.10a) are already available as estimates from 
an appropriate algorithm.  Then, the model variable,  ωm , of (1.1.10a) is replaced 
by the rotor speed estimate, rω̂ , and rω̂& , which is  ad , is made subject of the 

equation: 
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1.2. Demanded Acceleration Functions for Dynamic Modes 

 The functions, ad(ωr, ωd),  yielding the first order dynamic modes and other 
functions yielding the other dynamic modes listed and described in section 1.1.1 will 
now be given.   
 
1.2.1 Direct acceleration control mode 

 In this case, ad , is not a function of  ωr and  ωd , but is an external signal provided 
by the drive user.  The drive will only realise such demanded rotor acceleration, of 
course, within the limits determined by the maximum electrical torque, the external 
load torque and the dynamics of the driven mechanical load. 

 
1.2.2 Constant acceleration control mode 

 In this case, the demanded acceleration is determined by a constant demanded 
angular velocity, ωd , and a demanded acceleration time, Ts, and the dynamic torque 
is then determined by the sign of the angular velocity error: 

 ( )rd
s

d
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= , (1.2.1) 

where rω̂  is the filtered rotor speed estimate from the aforementioned observer and  
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xsgn .  This form of start-up response is commonly found in 

industrial electric drives designed to reach a constant demanded speed. 

 
1.2.3 Constant jerk control mode 

 In this mode, the acceleration during speed-up is increased from zero linearly up 
to half of the demanded speed and is then decreased to zero linearly at the same rate, at 
which point the demanded speed is reached. Thus the value of the acceleration 
derivative  ‘ε’ (i.e., the jerk) during speed-up is constant and the maximum 
acceleration is achieved in the middle of the speed-up interval. The demanded 
acceleration achieving parabolic movement may be generated as follows: 
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where the constant jerk magnitude is 2
sd T/4ω=ε .  It is important to calculate the 

maximum acceleration magnitude during this dynamic mode, as this determines the 
maximum motor torque required.  This is given by sdmax T/2a ω= . 

 The demanded acceleration of (1.2.2) is only valid for drive starting applications 
but may be generalised to a second order nonlinear dynamic mode which will 
continuously control the drive speed from one constant value to another with two 
intervals of equal and opposite jerk.  These intervals are not, in general, of the same 
duration.  This is similar mathematically to the closed-loop form of the time-optimal 
position controller for a mass moving without friction.  The required demanded 
acceleration equation is derived using the general method presented at the end of 
section 1.1.3 (ref., equation (1.1.9)): 
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As will be seen, rω̂&  is readily available from the observer. 

 
 
1.2.4 Linear first order control mode 

 In this case, the closed-loop system becomes a first order linear one with a time 
constant of  Tω  and the demanded acceleration equation yielding this is: 

 ( )rdd ˆ
T
1a ω−ω=
ω

. (1.2.4) 

 The closed-loop transfer function of the speed control system is then 
r

d

(s) 1
(s) 1 sTω

ω
=

ω +
 .  The approximate settling time of this system to reach 

approximately 95% of the steady-state speed response is well known and given by: 

 ω= T3Ts . (1.2.5) 



 

This is the dynamic mode used in the first experiments with the FDC based  a.c. 
drives. 

1.2.5. Linear second order control mode 

 In this case, the desired closed-loop differential equation for the ideal rotor 
speed is given by: 
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where  ωn  is the undamped natural frequency and  ζ  is the damping ratio.  Both of 
these parameters may be chosen freely.  The resulting closed-loop speed control 

transfer function of the drive is 
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  and the approximate 

settling time of this system to reach approximately 95% of the steady-state speed 
response is given by: 
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 Following the method presented in section 1.1.3 (ref., equations (1.1.5) to 
(1.1.8), incl.), a real-time second order model is set up and driven using the speed 
estimate, rω̂ , from the observer.  The continuous-time version of this model is 

formed from (1.2.6), and together with the demanded acceleration equation, this is 
as follows: 

 ( )
md

mnmd
2
nm

a
2

ω=

ωξω−ω−ωω=ω
&

&&&
. (1.2.8) 

 To facilitate straightforward numerical integration, the corresponding state-
space model, with state variables, m1x ω=  and m2x ω= &   is as follows: 
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(1.2.9) 

 The corresponding discrete time model for digital implementation is then: 
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(1.2.10) 

this particular example, however, a convenient  ‘short cut’ can be taken that avoids 
the state-space model.  Returning to (1.2.6),  ωr  is replaced by rω̂  and rω&  is 

replaced by  ad  yielding: 

 ( ) dnrd
2
nd a2ˆa ξω−ω−ωω=& , (1.2.11) 

which may be numerically integrated to yield the following iterative algorithm: 

 ( ) ( ) ( ) ( )[ ] hka2ˆka1ka dnrd
2
ndd ⋅ξω−ω−ωω+=+ . 

(1.2.12) 

This method has proven successful experimentally as well as that of (1.2.10). 

 The speed and acceleration profiles for four of the dynamic modes described 
above (1.2.2 – 1.2.5) are shown in Fig. 1.2.1. 
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Fig. 1.2.1   Speed and acceleration profiles for individual dynamic modes 
 


